LLM code better when they think functionally J

Dean Foster, Amazon

October 7, 2025

3D Tilting MEMS Mirror Matrix
P

1/39



My background: Before LLMs

@ Professor of Statistics

e Regression: variable selection, “big data”
e NLP: parsing, eigenwords before word2vec
o Game theory: Calibration, fairness

@ Joined Amazon 10 years ago to do forecasting
o My goal was to avoid the NN craze of NLP

2 /39



My background: Before LLMs

@ Professor of Statistics
e Regression: variable selection, “big data”
e NLP: parsing, eigenwords before word2vec
o Game theory: Calibration, fairness
@ Joined Amazon 10 years ago to do forecasting

e My goal was to avoid the NN craze of NLP
o We started using NNs for forecasting 1 year later
o We grew the NYC team to 30 scientists

@ Started an RL team in NYC
o Created systems to control buying, cross docks and placement

2 /39



My background: Before LLMs

@ Professor of Statistics
e Regression: variable selection, “big data”
e NLP: parsing, eigenwords before word2vec
o Game theory: Calibration, fairness
@ Joined Amazon 10 years ago to do forecasting
o My goal was to avoid the NN craze of NLP
o We started using NNs for forecasting 1 year later
o We grew the NYC team to 30 scientists
@ Started an RL team in NYC
o Created systems to control buying, cross docks and placement
e While the supply chain caught up with RL, my team started working on LLMs as
a side project

2 /39



My background: After LLMs

@ What I've been doing for the past 2 years:

Engineering: fighting communication bottlenecks (LLMs require bandwidth)
Alignment: defending LLMs using game theory ([1])

Optimization: picking the batch size ([2]) o

Applications: tutoring children ([3], [4])

Theory: Chain of thought lifts LLMs from TC? to PSPACE ([5])

RL: generate and test for self improvement ([6]) -

@ What I'll talk about today:

e Automatic reasoning, programming and Lean
e Lean: getting LLMs to think differently

2 /39


https://deanfoster.net/principal_agent_prezi.pdf
https://arxiv.org/abs/2410.21676
https://dhruvmadeka.com/post/llms_education/
https://arxiv.org/abs/2507.16252
https://deanfoster.net/tcs_talk.pdf
https://arxiv.org/pdf/2412.02674

LLMs do better with more thinking

Prompting Bard

4 L)
3 ° o o
= Step by Step is Longe; Take a Deep Breath is Longer
3 4= -—)
(&)
2 ° o o
1 ° ° o o ° ° ° ° °
-50 0 50 100 150 200 250

Difference in Length

4 /39



Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

5 /139



Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)
Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

5 /139



Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)
Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

Other versions:
Theorem (Malach 2023)

A linear LLM can be trained to mimic a Turing machine using chain-of-thought.

Theorem (Giannou, Rajput, Sohn, Lee, Lee, and Papailiopoulos 2023)

Looped Transformers are general computers.

5 /139



What should LLM’s think about?



What should LLM’s think about?

Lean!



What is Lean?

@ Lean is used for formalizing mathematics:

o Terry Tao is fascinated by Lean

He did a math project with 100s of people

They could all write Lean proofs

The proofs were “checked” by simply being type checked in Lean

7 /39



What is Lean?

@ Lean is used for formalizing mathematics:

o Terry Tao is fascinated by Lean

e He did a math project with 100s of people

e They could all write Lean proofs

e The proofs were “checked” by simply being type checked in Lean

@ The entire Cambridge undergraduate mathematics has been formalized in
Lean
e extensive library (mathlib) exists
e Formalization of latex to lean can be done (But is hard)

7 /39



What is Lean?

@ Lean is a functional programming language:

e Lean is a feature-complete functional programming language
e Itis a pure language: No side effects at all
e This makes it easy to prove theorems about the code you write

8/139



What does is Lean math look like?

The square root of a prime is irrational with the start of its proof in lean:

example {m np : N} (nnz : n # 0) (prime_p : p.Prime) : m A 2 £ p * n A 2 := by
intro sqr_eq
have nsqr_nez : n A 2 # 0 := by simpa
have eql : Nat.factorization (m A 2) p = 2 * m.factorization p := by

qQ /139



What is Lean?

@ How is mathematics connected to programming?

e “lambda calculus” was in mathematics before it was Lisp
e Turing machines are mathematics and programs
e Lean implements another form of logic based on type theory

10/ 39



What is Lean?

@ How is mathematics connected to programming?

e “lambda calculus” was in mathematics before it was Lisp
e Turing machines are mathematics and programs
e Lean implements another form of logic based on type theory

@ Atheorem in Lean is a type
@ A proof in Lean is an example of that type

10/ 39



What Lean isn’t:

Lean is not a theorem prover
@ Everyone knows 3SAT can represent any logic problem
@ But no one writes 3SAT to describe their problems

@ SMT solvers are generic tool
@ Leanis not an SMT

o ltis a proof assistant
e Humans write the proofs, and Lean checks it

11 /39



What Lean isn’t:

Lean is not axiomatic mathematics
@ The axioms need to be added (called mathlib)
@ So Lean is very small and has been proven to be a correct engine
@ Lean doesn’t make errors—axioms might!

12 /139



Amazon’s connection to Lean

@ We have the Leo de Moura (the creator of Lean) on our Automatic reasoning
team

@ But we have 100 other scientist doing automatic reasoning (largest in the
world)

They find bugs in hardware

They Find security leaks

They create provable correct translations crypto code

They create the trust that AWS users require

13 /139



What does Lean code look like? (here is Quick Sort)

def gsort.F {a} (1t : a - a - bool) : N (x : list a),
(n (y : list a), length y < length x - list a) - list a
I [1] IH := []
| (h::t) IH := begin
induction e : partition (A x, 1t h x = tt) t with large small,
have : length small < length (h::t) A length large < length (h::t),
{ rw partition_eq_filter_filter at e,
injection e,
subst large, subst small,

constructor;
exact nat.succ_le_succ (length_le of_sublist (filter_sublist _)) 3},

exact IH small this.left ++ h :: IH large this.right

end

14 /39



Writing lean code is hard;

checking it is easy



Generate and test

@ Classic idea:

e Generation is easier than testing
e The gap can be HUGE:

@ Suppose NP ~ EXP
@ Generation is takes exponential time
@ Testing takes polynomial times

@ Nicely fits into mathematics

e Problem to solution is generation
e Solution to problem is testing

16 /39



generate

Problem

test

17 /39



Generate and test

@ Fits nicely into LLMs
e Have one LLM generate a solution
e Have a different one test the solution
e Improve the generation
@ We found disappointing results ([6])
Saturates after a few rounds
Effectively doubling the data size
Far from a polynomial — exponential split
Better models have a bigger gap, so the future might still be rosy for this
approach

18 /39


https://arxiv.org/pdf/2412.02674

coding

Problem

statement

compiling

19 /139



Only checks for termination.



coding

Problem

statement

theorems & proofs

241 /39



Both directions require LLMs.



Give LLMs problems they can more easily solve

@ Have LLMs:

e Write the goal of the program (aka doc string)
o Write unit tests
e Write code

@ Have them check consistency between them
@ No compiling necessary! All done by LLMs

29 /29



typical coding model

24 / 39



CLOVER: Ask an LLM interesting questions

@ Do these unit tests match the doc string?
@ Does this doc string summarize the code?
° ...

@ 6 questions in all

@ Key idea in CLOVER by Sun Sheng Padon and Barrett.
(They actually used formalization instead of unit tests)

25 / 39


https://arxiv.org/abs/2310.17807

Problem

26 /39



| call this thinking in Lean



| call this thinking in Lean

But why should it help?



Sapir-Whorf Hypothesis

@ Some of my coauthors think in Mathematics

28 / 39



Sapir-Whorf Hypothesis

@ Some of my coauthors think in Mathematics
@ | dont!

e | think in heuristics
e | treat mathematics like an empirical science

@ We think differently

28 / 39



Sapir-Whorf Hypothesis

@ Sapir-Whorf hypothesis says that the language we use influences the way we
think.

e Example claim by Frank Boas: “Eskimos have 200 words for snow so they
understand it better.”

29 / 39


https://en.wikipedia.org/wiki/Eskimo_words_for_snow

Sapir-Whorf Hypothesis

@ Sapir-Whorf hypothesis says that the language we use influences the way we

think.
e Example claim by Frank Boas: “Eskimos have 200 words for snow so they

understand it better.”
e This is wrong in at least 4 ways (not Eskimos, inaccurate quote, 10 not 200, no

change in thinking)
@ Generally considered discredited

29 / 39


https://en.wikipedia.org/wiki/Eskimo_words_for_snow

Sapir-Whorf Hypothesis

@ Sapir-Whorf hypothesis says that the language we use influences the way we

think.
e Example claim by Frank Boas: “Eskimos have 200 words for snow so they

understand it better.”
e This is wrong in at least 4 ways (not Eskimos, inaccurate quote, 10 not 200, no

change in thinking)
@ Generally considered discredited
@ Great SF though:
e Early: Samuel R. Delany’s Babel 17

o Hopeful: Suzette Haden Elgin’s Native Tongue
o Less extreme: Janet Kagan’s Hellspark

29 / 39


https://en.wikipedia.org/wiki/Eskimo_words_for_snow

Sapir-Whorf Hypothesis

@ Changing English to Chinese doesn’t matter

20 / 39



Sapir-Whorf Hypothesis

@ Changing English to Chinese doesn’t matter
@ Changing English to Logic is a big change

20 / 39



Sapir-Whorf Hypothesis

@ Changing English to Chinese doesn’t matter
@ Changing English to Logic is a big change
@ Changing imperative coding to functional coding is a big change

20 / 39



What if we do chain-of-though in Lean?



Lean short cut

Problem

Lean Python

292 /29



Performance vs Generation Length: Multi-Step Reasoning Shows Similar Lengths, Different Resuli

Lean4 Pass Rate (%)

70

5
5

8

—@- Direct Generation Baseline

- Functional Generation

@ Direct: 42.13% (603 tokens)

@ Imperative: 44.94% (573 tokens)

@ Functional: 48.88% (585 tokens) 58.4%

50.0%

Functional

Imperative

Direct

20,

15.

Al approaches: +API +3 error corrections pass@5 results
Similar generation lengths (573-603 tokens) produce different performance levels

10 20 30 40 50 60 70
Pass@k (Direct Generation) / Strategy Position

213 /139












The dream

doc-string

formal
I

proof

Lean

output ) Python

unit-test

7 /39



Close LLM Colaborators:

@ Robert Joseph [intern and Cal Tech] Lean

@ Carson Eisenach [NYC] RLMF, Lean

@ Udaya Guha [NYC — AWS] Lean

@ Dhruv Madeka [NYC — GDM] communication

@ Omer Gottesman [NYC] education

Riccardo Savorgnan [NYC — NYU] Lean

@ Sham Kakade [Amazon Scholar and Harvard] Batch size and education
@ Alex (Hyunji) Nam [intern and Stanford] Education

@ Yuda Song [intern and CMU] mathematics

@ Dominique Perrault-Joncas [Seattle] Computer and human eval

@ Kari Torkkola [Seattle] Fine tuning

@ Joao Sedoc [NYU] Human evaluation and theory (see him Friday!)

@ Lyle Ungar [U Penn], Emma Brunskill [Stanford], Amy Zhang [UT]: Education
° ...

28 / 39



THANKS!

Opiicaloer Twovaxis MEMS
eolimator array it minor amay

Opiial fiber
colimator array

Tuo-axis HEMS
it minorartay

29 / 39



Citations (slides at deanfoster.net and amazon.science)

“Principal / agent theory for LLMs and alignment,” —. ([1])

“How Does Critical Batch Size Scale in Pre-training?” Zhang, Morwani, Vyas, Wu,
Zou, Ghai, —, Kakade. ([2])

“What is the Value of Human-Level Al to Education?,” Madeka, —, Kakade. ([3])

“Efficient RL for optimizing conversation level outcomes with an LLM-based tutor,”
Nam, Gottesman, Zhang, —, Brunskill, Ungar. ([4])

“ATCS look at LLMs,;” — at MTI-LLM. ([5])

“Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models
Song, Zhang, Eisenach, Kakade, —, Ghai. ([6])

“Clover: Closed-Loop Verifiable Code Generation,” Chuyue Sun, Ying Sheng,
Oded Padon, Clark Barrett. (CLOVER)

“Progressive Formalization: A Multi-Representation Framework for Automated Verificatio
Ceisen, George, —. Today’s talk.

40 / 39


https://deanfoster.net/principal_agent_prezi.pdf
https://arxiv.org/abs/2410.21676
https://dhruvmadeka.com/post/llms_education/
https://arxiv.org/abs/2507.16252
https://deanfoster.net/tcs_talk.pdf
https://arxiv.org/pdf/2412.02674
https://arxiv.org/abs/2310.17807
https://deanfoster.net/COLM.pdf

