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Can't fit model if p > n:
@ Trick: assume most 3; are in fact zero
@ Variable selection:

SRIC :{ 0 if |3 < SEiv/2logp
1

B; otherwise

@ Basically just stepwise regression and Bonferroni

o Can be justified by “risk ratios” (Donoho and Johnstone ‘94,
Foster and George '94)



Model and background
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I've played with lots of alternatives:
@ FDR instead of RIC:

e \/2logp — +/2l0g(p/q)
e empirical Bayes (George and Foster, 2000)

e Cauchy prior (Foster and Stine, 200x)

@ regression — logistic regression
@ IID — independence
@ independence — block independence (with Dongyu Lin)
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Where do this many variables come from?
@ Missing value codes
@ Interactions

@ Transformations
@ Example (with Bob)
e Personal Bankruptcy
@ 350 basic variables
e all interactions, missing value codes, etc lead to 67,000
variables
about 1 million clustered cases
Ran stepwise logistic regression using FDR
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Summary of current state of the art:
@ We can generate many non-linear X’s
@ We can select the good ones large lists
@ Isn’t the problem “solved”?



Model and background
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There is always room for finding new X’s



@ Current methods of finding X’s are non-linear
@ Can we find “new” linear combinations of existing X’s?

e Hope, use linear theory
e Hope, fast CPU
e Hope, new theory



Semi-supervised

Semi-supervised learning is:
@ Y’s are expensive
@ X’s are cheap
@ Wegetnrowsof Y
@ But also m free rows of just X’s
@ Called, semi-supervised learning
@ Can this help?



Usual data table for data mining

(nx1) || (nxp)

with p > n



With unlabeled data

m rows of unlabeled data:

Y X

nx1 (n+m)xp




With alternative X’s

m rows of unlabeled data, and two sets of equally useful X’s:

Y X Z

nx1 (n+m)xp (n+m)xp

With: m>n



@ Person identification
e Y =identity
e X = Profile photo
e Z =front photo
@ Topic identification (medline)
e Y =topic
e X = abstract
o Z =text
@ The web:

e Y = classification
e X = content (i.e. words)
e Z = hyper-links

@ We will call these the multi-view setup



A Muliti-View Assumption

Define

02 = E[Y-E(Y|X)?
02 = E[Y-E(Y|2)?
ok, = E[Y-E(YX,Z)P

(We will take conditional expectations to be linear)

Y, X, and Z satisfy the a.-multiview assumption if:

oy < oe,(1+a)
07 < o, (1+a)

@ Inother words, 02 ~ 0% ~ 0%,

@ Views X and Z are redundant (i.e. highly collinear)



The Multi-View Assumption in the Linear Case

@ The views are redundant.

@ Satisfied if each view predict Y well.

@ No conditional independence assumptions (i.e. Bayes
nets)

@ No coordinates, norm, eigenvalues, or dimensionality
assumptions.



Both estimators are similar

Under the a-multiview assumption

EI(E(Y|X) - E(Y|Z))] < 202

@ Idea: find directions in X and Z that are highly correlated
@ CCA solves this problem already!



What if we run CCA on X and Z7?

CCA = canonical correlation analysis
@ Find the directions that are most highly correlated
@ Very close to PCA (principal components analysis)
@ Generates coordinates for data
@ End up with canonical coordinates for both X’s and Z’s
@ Numerically an Eigen-value problem



CCA form

Running CCA on X and Z generates a coordinate space for
both of them. We will call this “CCA form.”



CCA form

Running CCA on X and Z generates a coordinate space for
both of them. We will call this “CCA form.”
Definition
Xj, and Z;, are in CCA form if
@ X; are orthonormal
@ Z; are orthonormal
@ X'Z =0fori#j
@ X/Zi=X, M= Xp> -2 Xp>0

(This is the output of running CCA on the original X’s and Z’s.)



CCA form as a covariance matrix

= —
Yox | Xzz D |1
The canonical correlations are \;:
A 00O

0 X O
D=10 0 X



The Main Result

Let (3 be the Ridge regression estimator with weights induced
by the CCA. Then

2
Risk(3) < <5a + ZnA') o?




The Main Result

Let (3 be the Ridge regression estimator with weights induced
by the CCA. Then

A 22
Risk(3) < <5a + Zn') o2
CCA-ridge regression is to minimize least squares plus a penalty
of:
Z Y b
]
@ Large penalties in the less correlated directions.

@ )\;’s are the correlations
@ A shrinkage estimator.




The Main Result

Theorem

Let (3 be the Ridge regression estimator with weights induced
by the CCA. Then

2
Risk(3) < <5a + ZnA' ) o2

Recall « is the multiview property:

0)2( < sz( +a)
a? < UXZ( +a)



The Main Result

Let (3 be the Ridge regression estimator with weights induced
by the CCA. Then

2
Risk(3) < <5a + ZnA' ) o2

@ 5« is the bias
Z 2

is variance



Doesn’t fit my style

@ | like feature selection!
@ On to theorem 2



Alternative version

For /3 be the CCA-testimator:

Risk(j3) < (wa - Z) 02

where d is the number of \; for which \; > 1 — \/a.




Alternative version

Theorem
For /3 be the CCA-testimator:

Risk(j3) < <2¢a - Z) 02

where d is the number of \; for which \; > 1 — \/a.

The CCA testimator:

~ [ MLE(B) ifN>1-a
B"{ 0 else (1)



Alternative version

Theorem
For /3 be the CCA-testimator:

Risk(j3) < <2¢a - Z) 02

where d is the number of \; for which \; > 1 — \/a.

Do we need to know «?
@ We can try features in order
@ Use promiscuous rule to add variables (i.e. AIC)
@ Will do as well as theorem, and possibly much better
@ Doesn’t mix all that well with stepwise regression



Conclusions

@ Trade off between two theorems?
@ Experimental work?



Conclusions

@ Trade off between two theorems?
@ Experimental work? Soon!



