Parameter Estimation for Statistical Parsing Models:
Theory and Practice of Distribution-Free Methods

Michael Collins
AT&T Labs-Research.
mcollins@research.att.com

Abstract
A fundamental problem in statistical parsing is the chofogriteria and algorithms used to estimate the parameters
in a model. The predominant approach in computational Istms has been to use a parametric model with some
variant of maximume-likelihood estimation. The assumpgionder which maximum-likelihood estimation is justified
are arguably quite strong. As an alternative, we proposeritthgns based on distribution-free analysis. We describe
two algorithms based on these methods. The first uses bgadtjarithms to rerank the output of an existing statistical
parser. The second method uses the Perceptron or Supptit Machine algorithms.

1 Introduction

A fundamental problem in statistical parsing is the choi€eriteria and algorithms used to estimate the
parameters in a model. The predominant approach in conipughtinguistics has been to use a parametric
model with maximum-likelihood estimation, usually withrse method for “smoothing” parameter estimates
to deal with sparse data problems. Methods falling into t@tegory include generative models such as
Probabilistic Context-Free Grammars and Hidden Markov élesdMaximum Entropy models for tagging and
parsing, and recent work on Markov Random Fields.

The first part of this paper discusses the statistical thenderlying various parameter-estimation methods.
The assumptions under which maximume-likelihood estinmaisgustified are arguably quite strong — namely,
that the structure of the process that generated the dat@verk(for example, maximum likelihood estimation
for PCFGs is justified providing that the data was actuallpegated by a PCFG). In contrast, work in
computational learning theory has concentrated on modtstive weaker assumption that training and test
examples are generated from the same distribution, butte&brm of the distribution is unknown: in this sense
the results hold across all distributions and are callesttitiution-free". The result of this work — which goes
back to results in statistical learning theory by Vapnik antleagues, and to work within Valiant's PAC model
of learning — has been an explosion of algorithms and thetigwprovide radical alternatives to parametric
maximume-likelihood methods. These algorithms are appgéaii both theoretical terms, and in their impressive
results in many experimental studies.

The second part of the paper discusses two parsing methseld ba distribution-free training methods. The
first uses boosting algorithms to rerank the output of artiexistatistical parser. The second method uses the
Perceptron or Support Vector Machine algorithms; a keygimisis that these algorithms allow representation
of parse trees through "kernels" — the paper discusses hoketinel trick can be used to give polynomial time
algorithms for models with an exponential number of pararsesuch as a representation tracking all subtrees
of a tree (as in the DOP1 model for parsiipd 1998).

2 Linear Models for Parsing

Say we have a context-free grammar (geepcroft and Ullman 197%or a formal definition)7 = (IV, Z, R, S)
whereN is a set of non-terminal symbols,is an alphabetR is a set of rules of the for’t’ — Y1Y5...Y, for
X,Y; € (N UZ), andS is a distinguished start symbol ii. The grammar defines a set of possible strings,

and possible string/tree pairs, in a language. WeGige for all z € Z* to denote the set of possible trees
(parses) for the string under the grammar (this set will be empty for strings not gategl by the grammar).

A weighted grammafy = (N, 2, R, S, ©) also includes a parameter vec&®which assigns a weight to each
rule in R. If there aren rules inR, then® € R" (we assume that there is some arbitrary ordering . r,, of
the rules inR, and that the’'th component o is the weight on rule:;).

Given a sentence and a treg spanning the sentence, we assume a fungtieny) which tracks the counts
of the rules in(z, y). Specifically, the’th component ofs(z, y) is the number of times rule is seen inz, y).
Under these definitions, the weighted context-free grantefines a functiorh from sentences to trees:

ho(z) = arg max ¢(z,y) - © (1)
yeG(z)

Finding ho(x), the parse with the largest weight, can be achieved in palyaidime using a variant of the
CKY parsing algorithm (in spite of a possibly exponentiafther of members off(z)).

In this paper we consider the structure of the grammar to leglfithe learning problem being reduced to
setting the values of the paramet&sThe basic question is: given a “training sample” of senédtinee pairs
{(z1,y1) ... (zm,ym)}, what criterion should be used to set the weights in the grarAinA very common
method — that of Probabilistic Context-Free Grammars (P§}FQuses the parameters to define a distribution
P(z,y|©) over possible sentence/tree pairs in the grammar. MaxiniketiHood estimation is used to set
the weights. We will consider the assumptions under whidh tiethod is justified, and argue that these
assumptions are quite strong. We will also give an examp#htov how PCFGs can be badly mislead when
the assumptions are violated. As an alternative we will psepdistribution-free methods for estimating the
weights, which are justified under much weaker assumptiand,can give quite different estimates of the
parameter values in some situations.

We would like to generalize weighted context-free gramnigrsllowing the representatiof(z, y) to be
essentially any feature vector representation of the raere is still a gramma, defining a set of candidates
G(z) for each sentence. The parameters of the parser are a @&ctbhe parser’s output is defined in the
same way as Eq. 1. The important thing in this generalizagitimat the representatignis now not necessarily
directly tied to the productions in the grammar. This is atially the approach advocated bjohnson et al.
1999, although the criteria that we will propose for setting tlaegmeter® are quite different.

While superficially this might appear to be a minor chang@titoduces two major challenges. The first
is: how should the parameter values be set under these gyegEnesentations? The PCFG method described
in the next section, which results in simple relative freqgeestimators of rule weights, is not applicable to
more general representations. A generalization of PCF@skd¥ Random Fields (MRFs), has been proposed
by several authorBAbney 1997; Johnson et al. 1999; Della Pietra et al. 199his paper gives several
alternatives to MRFs, and describes the theory and assomsptihich underly various models.

A second challenge is that now that the parameters are ddttieles in the grammar the CKY algorithm is
not applicable — in the worst case we may have to enumerateeatibers of7 () explicitly to find the highest-
scoring tree. One practical solution is to define the “graminGaas a first pass statistical parser which allows
dynamic programming to enumerate its topandidates. A second pass uses the more complex représentat
¢ to choose the best of these parses. This is the approachriggallins 2000; Collins and Duffy 2041

3 Probabillistic Context-Free Grammars

This section gives a review of the basic theory behind Prilibb Context-Free Grammars (PCFGs). Say
we have a context-free grammér = (IV, 2, R, S) as defined in section 2. We will usg to denote the
set of all trees generated l6y. Now say we assign a weightr) in the range 0 to 1 to each rufein R.
Assuming some arbitrary ordering. . .r, of then rules in R, we use® to denote a vector of parameters,

© = {logp(r1),logp(rz)...logp(r,)}. If ¢(T,r) is the number of times rule is seen in a tred’, then the
“probability” of a treeT’ can be written as

P(T|©) = [[p(r)*™ orequivalently logP(T|©) = > (T, r)logp(r) = ¢(T) - ©
reR r
where we defin@(T") to be amn-dimensional vector whoséh componentis:(T), r;).

[Booth and Thompson 1978ive conditions on the weights which ensure tR&¥'|©) is a valid probability
distribution over the sef, in other words tha ., P(T|©) = 1, andvT € T, P(T|©) > 0. The main
condition is that the parameters define conditional distiims over the alternative ways of rewriting each
non-terminal symbol in the grammar. Formally, if we uggx) to denote the set of rules whose left hand side
is some non-terminat, thenva € N, }- g, p(r) =1 andvr € R(a), p(r) > 0. Thus the weight
associated with a rule — can be interpreted as a conditional probabiR3|«) of « rewriting asg (rather
than any of the other alternativesR{«)).

We can now study how to train the grammar from a training saropirees. Say there is a training set of trees
{T1,T»...Ty}. Thelog-likelihoodof the}raining set given parametegsis L(©) = 3, log P(T}|©). The
maximume-likelihood estimates are to ta®e= arg maxcq L(O©), whereQ is the set of allowable parameter
settings (i.e., the parameter settings which obey the caingt in [Booth and Thompson 1973 It can
be proved using constrained optimization techniques, (iging Lagrange multipliers) that the maximum-
likelihood estimate for the weight of a rutle= o — Bis p(a — 3) = >, c(Tj, a = B)/ 32, c(Tj,) (here
we overload the notatiomso thate(«) is the number of times non-terminalis seen inT"). So “learning” in
this case involves taking a simple ratio of frequencies toutate the weights on rules in the grammar.

So under what circumstances is maximum-likelihood estongtstified? Say there is a true set of weights
©*, which define an underlying distributioR(7"|©*), and that the training set is a sample of sizefrom
this distribution. Then it can be shown thatrasincreases to infinity, then with probability 1 the parameter
estimate® converge to the “true” parameter values.

To illustrate the deficiencies of PCFGs, we give a simple gglamSay we have a random process which
generates just 3 trees, with probabilitigs, p2, ps}, as shown in figure 1(a). The training sample will consist
of a set of trees drawn from this distribution. A test sampiklve generated from the same distribution, but
in this case the trees will be hidden, and only the surfadegstwill be seen (i.e{aaaa), (aaa) and(a) with
probabilitiesps, p,, p3 respectively). We would like to learn a weighted CFG with @& error as possible on
a randomly drawn test sample.

As the size of the training sample goes to infinity, the retafiequencies of tregd;, T2, T3} in the training
sample will converge tépi, p2, ps}. This makes it easy to calculate the rule weights that maririkelihood
estimation converges to — see figure 1(b). We will call the B@Hth these asymptotic weights tasymptotic
PCFG. Notice that the grammar generates trees never seen imgaiata, shown in figure 1(c). The grammar
is ambiguous for string&aaa) (bothT; andT} are possible) anthaa) (T> andTs are possible). In fact, under
certain conditiong, andTs will get higher probabilities under the asymptotic PCFGitiia and7>, and both
strings{aaaa) and{aaa) will be misparsed. Figure 1(d) shows the distribution of éisgmptotic PCFG over
the 8 trees whep; = 0.2,p, = 0.1 andps = 0.7. In this case both ambiguous strings are misparsed by the
asymptotic PCFG, resulting in an expected error rat@of p,) = 30% on newly drawn test examples.

This is a striking failure of the PCFG when we consider thit @asy to derive weights on the grammar rules
which parse both training and test examples with no efdds this example there exist weighted grammars
which make no errors, but the maximum likelihood estimatiwathod will fail to find these weights, even with
unlimited amounts of training data.

1[Booth and Thompson 1973lso give a second, technical condition on the probalsiljie’), which ensures that the probability of a
derivation halting in a finite number of steps is 1.

2Given any finite weights on the rules other tfain— a, it is possible to set the weigBt — a sufficiently low forTy and7> to get
higher scores thafi; andTs.

(& Ty s T s T3 s
/\ | |
8 o ¢ B
P PN N |
a a a a a a a a
(b)
Rule No. 1 2 3 4 5 6 7
Rule S—BC S—=C S—B B—aa B—a C—aa C—aaa
Asymptotic P1 P2 P3 r1/(py + p3) r3/(p1 + p3) r1/(p1 + p2) pa/(p1 + p2)
ML Estimate
© Ty s Ts s Tg s T s Tg s
/\ P\ /\ | |
g c B ¢ g e B ¢
| ! P a a a a
a /'\ a a a a a /‘\
a a a 3 a a
(d)
Tree T, T, T T, Ty Tg Ty Tg

Rules Used 146 2.7 35 157 156 | 147 34 26
Asymptotic Prob. Estimate 0.0296 | 0.0333 | 0544 | 00519 | 0.104 | 0.0148 | 0.156 | 0.0667
withpy = 0.2, py = 0.1, pg = 0.7

Figure 1: (a) Training and test data consists of trf€gsT, and 73 drawn with probabilitieg, p» and ps.

(b) The ML estimates of rule probabilities converge to sienfainctions ofpy, p2, p3 as the training size goes
to infinity. (c) The grammar also generatEs. .. T, which are never seen in training or test data. (d) The
probabilities assigned to the trees as the training size goifinity, forps = 0.2,p, = 0.1, p3 = 0.7.

4 Theory

This section introduces a general framework for supentesmhing problems. There are several bd@evroye

et. al 1996; Vapnik 1998; Cristianini and Shawe-Taylor 208Bich cover the material in detail. We will use

this framework to analyze both parametric methods (PCR@sXample), and the distribution—free methods

proposed in this paper. We assume the following:

¢ An input domainX’ and an output domaiy. The task will be to learn a function mappidgto). In
parsing, X’ is a set of possible sentences 3hd a set of possible trees.

e There is some underlying probability distributid(x, y) overX’ x Y. The distribution is used to generate
both training and test examples. It is an unknown distrdoutbut it is constant across training and test
examples.

e There is aloss functioh(y,) which measures the cost of proposing an ougpuhén the “true” output ig.
A commonly used cost is the 0-1 lo$y, y) = 0if y = ¢, andL(y,§) = 1 otherwise. We will concentrate
on this loss function in this paper.

e Given a functiom: from X' to), its expected losis Er(h) = 3, D(z,y)L(y, h(z)). Under 0-1 loss this
is the expected proportion of errors that the hypothesisamak examples drawn from the distributifn
We would like to learn a function whose expected loss is asdswossible Er(h) is a measure of how
successful a functioh is. Unfortunately, because we do not have direct accessetdigtributionD, we
cannot explicitly calculate the expected loss of a hypashes

e The training set is a sample ot pairs {(z1,y1),..-,(Zm,ym)} drawn from the distributionD. This

is the only information we have abol. The empirical lossof a functionk on the training sample is

Er(h) = £ 3 L(ys, h(zs)).

A useful concept is th8ayes Optimahypothesis, which we will denote ds;. It is defined asig(z) =
argmaxcy D(z,y). The Bayes optimal hypothesis simply outputs the mostylikalinder the distributiotD
for each inpute. It is easy to prove that this function minimizes the expettssEr(h) over the space of all
possible functions — the Bayes optimal hypothesis cannohpeoved upon. Unfortunately, in general we do
not knowD(z,y), so the Bayes optimal hypothesis, while useful as a thealetonstruct, cannot be obtained
directly in practice. Given that the only access to the itistron D(z, y) is indirect, through a training sample
of finite sizem, the learning problem is to find a hypothesis whose expe&kdsrlow, using only the training
sample as evidence.

4.1 Parametric Models

Parametric models attempt to solve the supervised leapriolglem by explicitly modeling either the joint
distributionD(z, y) or the conditional distribution® (y|z) for all x.

In the joint distribution case, there is a parameterizedabdity distributionP(z,y|®). As the parameter
values® are varied the distribution will also vary. The parametercgf) is a set of possible parameter values
for which P(z, y|©) is a well-defined distribution (i.e., for whickh,, | P(z,y|©) = 1).

A crucial assumption in parametric approaches is that tses@me®* € Q suchthatD(z,y) = P(z,y|0*).

In other words, we assume thBtis a member of the set of distributions under consideratidaw say we
have a training sampl(z1,y1) . . . (€, ym)} drawn fromD(z,y). A common estimation method is to set
the parameters to the maximum-likelihood estima@®s; argmaxy_, log P(z;,y;|©). Under the assumption
thatD(z,y) = P(z,y|©*) for some®* € Q, for a wide class of distributions it can be shown t4t:, y|©)
converges taD(z,y) in the limit as the training size: goes to infinity. Because of this, if we consider the
function A(z) = arg maxecy P(z,y|©), then in the limith(z) will converge to the Bayes optimal function
hp(x). So under the assumption tha{z,y) = P(xz,y|©*) for some®* € Q, and with infinite amounts of
training data, the maximum-likelihood method is provahtyimal.

Methods which model the conditional distributidn(y|z) are similar. The parameters now define a
conditional distributionP(y|z,©). The assumption is that there is so®& such thatVz, D(y|z) =
P(y|z,©*). Maximum-likelihood estimates can be defined in a similayvand in this case the function
h(z) = arg maxey P(y|z, ©) will converge to the Bayes optimal functidn; (z) as the sample size goes to
infinity.

4.2 An Overview of Distribution-Free Methods

From the arguments in the previous section, parametric adstlare optimaproviding that the distribution
generating the data is in the class of distributions beingsidered But what happens if this assumption is
violated? In this case there are no guarantees on the edpote rate of the maximume-likelihood method. The
example in section 3 shows how maximum-likelihood estioraian be badly mislead when the distribution
generating the data is not in the class being considered.

This paper proposes alternatives to maximume-likelihoothos which give theoretical guarantees without
making the assumption that the distribution generatingitita comes from some predefined class. The only
assumption is that the same distribution generates battirtggand test examples. These methods also provide
bounds on how many training samples are required for legrmaaling with the case where there is only a
finite amount of training data. Thus the methods address@ndeweakness of the parametric approattie
guarantees of ML estimation are asymptotic, holding onthalimit as the training data size goes to infinity

A crucial idea in distribution-free learning is that ofhgpothesis spaceThis is a set of functions under
consideration, each member of the set being a fundtiol’¥ —). For example, in weighted context-free
grammars the hypothesis spacgds= {he(z) = argmaxcq(,) #(z,y) - © : © € R"}. So each possible
parameter setting defines a different function from sermgrio trees, an@(is the infinite set of all such
functions a® ranges over the parameter spae

Learning is then usually framed as the task of choosing adfjhunction in’H on the basis of a training sam-
ple as evidence. Recall the definition of the expected efrathypothesisEr(h) = >°, . D(z,y)L(y, h(z)).

We will use h* to denote the “best” function ifH by this measureh* = argminecy Er(h) =
argmin,cy Zw D(z,y)L(y, h(zx)). Afirst learning method to study is as follows. Given a tragnsample
(z;,y;) fori = 1...m, the method simply chooses the hypothesis with minimum eagpierror, that is
h = argmin,ey Er(h) = argmin,ey = 37, Ly, h(z;)). This strategy is called “Empirical Risk Minimiza-
tion” by Vapnik [Vapnik 1998. Two questions which arise are:

¢ Inthe limit, as the training size goes to infinity, does th@eof the ERM methO(Er(fL) approach the error

of the best function in the sekr(h*), regardless of the underlying distributidz, y)? In other words, is
this method of choosing a hypothesis always consistent?

The answer to this depends on the nature of the hypothesie spaFor finite hypothesis spaces the ERM
method is always consistent. For many infinite hypothesigag, such as the weighted grammar example
above, the method is also consistent. However, some infigjiethesis spaces can lead to the method being
inconsistent — specifically, if a measure called the VC disiam[Vapnik 1998 of H is infinite, the ERM
method may be inconsistent. Intuitively, the VC dimensian be thought of as a measure of the complexity
of an infinite set of hypotheses.

e Ifthe method is consistent, how quickly doBs(%) converge tar(h*)? In other words, how much training
data is needed to have a good chance of getting close to théubetion inH? We will see in the next
section that the convergence rate depends on various nesasiuthe “size” of the hypothesis space. For
finite sets, the rate of convergence depends directly uppsi#e of#H. For infinite sets, several measures
have been proposed — we will concentrate on rates of corveedesed on a concept called tharginof a
hypothesis on training examples.

4.3 Convergence Results for Hyperplane Classifiers

This section describes analysis applied for binary classifiwhere the se¢ = {—1,+1}. We consider
hyperplane classifiers, where a linear separator in sontgréespace is used to separate examples into the two
classes. Hyperplane classifiers go back to one of the dadi@sing algorithms, the Perceptron algorithm
[Rosenblatt 1958 There has been a large amount of effort devoted to the thefonyperplane classifiers.
They are similar to the linear models for parsing we propasestction 2 (in fact the framework of section 2
can be viewed as a generalization of hyperplane classifié¥s)will initially review some results applying to
linear classifiers, and then discuss how various resultsheapplied to parsing.

We will discuss a hypothesis spaceratlimensional hyperplane classifiers, defined as follows:

e Each instance is represented as a vectffz) in R".

e For given parameter valu& € R™ and a bias parametére R, the output of the classifier &g ;(z) =
sign(4(z) - © + b) where sigiiz) is +1 if 2 > 0, —1 otherwise. There is a clear geometric interpretation
of this classifier. The pointg(z) are inn-dimensional Euclidean space. The parame&rs define a
hyperplane through the space, the hyperplane being thd petrds z such thatz - © + b) = 0. Thisis a
hyperplane with norma®, at distancé/||©|| from the origin. This hyperplane is used to classify poimis:
points falling on one side of the hyperplane are classified Bpoints on the other side are classified-ds

¢ The hypothesis space is the set of all hyperplakes; {ho () : © € R",b € R}.

It can be shown that the ERM method is consistent for hypagdathrough a method called VC analysis
[Vapnik 1998. We will not go into details here, but roughly speaking, tHg-slimension of a hypothesis space
is a measure of its size or complexity. A set of hyperplanek’irhas VC dimension ofn + 1). For any
hypothesis space with finite VC dimension the ERM method isistent.

An alternative to VC-analysis is to analyse hyperplanestbh properties of “margins” on training examples.
First consider the case where a training samgle, y1) - . . (zm,ym)} is “linearly separable” — there is a
hyperplane which achieves 0 errors on the training datan Ttveeach hyperplane with 0 error (there will in
general be more than one), thrarginon the training set for hyperplang is defined a$

yi (¢(xi) - © +b)
1ol

(2)

Yo,p = m}in
i

3)|@|| is the Euclidean norm, /Z]. o7

The margime, has a simple geometric interpretation: it is the minimuntetise of any training point to the
hyperplane defined b®, b. The following theorem then holds:

Theorem 1 Special case dfCristianini and Shawe-Taylor 2000 heorem 4.19. Assume the hypothesis class
‘H is a set of hyperplanes, and that there is some distribufi¢m, i) generating examples. L&be a constant
such thatvz, ||¢(x)|| < R. Forall he € H with zero error on the training sample, with probability &&ist

1 — 4 over the choice of training set of size drawn fromD,

R? 1
Er(hop) < < —— log? m + log =
m \ V5. 1)
wherec is a constant.

The bound is minimized for the hyperplane with maximum ma(ge., maximum value foye ;) on the training
sample. This bound suggests that if the training data isabfeg the hyperplane with maximum margin should
be chosen as the hypothesis with the best bound on its exierete. It can be shown that the maximum margin
hyperplane is unique, and can be found efficiently usingrélyos described in section 5.2. Search for the
maximum-margin hyperplane is the basis of “Support VectacMnes” (hard-margin versiofiyapnik 199§.
The previous theorem does not apply when the training dataatdoe classified with O errors by a hyperplane.
There is, however, a similar theorem that can be applieddmtin-separable case. First, def.fr(éae,b,y) to
be the proportion of examples on training data with margis kaany for the hyperplanée :

TS U

The following theorem can now be stated:

Theorem 2 [Cristianini and Shawe-Taylor 2000"heorem 4.19. Assume the hypothesis cldss a set of
hyperplanes, and that there is some distributidf, y) generating examples. L&t be a constant such that
Vz,||¢(x)|| < R. Forall he, € H, for all v > 0, with probability at leastl — ¢ over the choice of training set
of sizem drawn fromD,

A R2 1
Er(hop) < L(hop,7y) + \/i <—2 log? m + log —>
m \ 7y 0

wherec is a constant.
This result is important in cases where a large proportiamaifiing samples can be classified with relatively
large margin, but a relatively small number of outliers mideproblem inseparable, or force a small margin.
The result suggests that in some cases a few examples ale“gioihg up on”, resulting in the first term in the
bound being larger than 0, but the second term being mucHesrdalke to a larger value for. Thesoft margin
version of Support Vector Maching€ortes and Vapnik 1995described in section 5.2, attempts to explicitly
manage the trade-off between the two terms in the bound.

A similar bound, due t¢Schapire et al. 1998involves a margin definition which depends on the 1-norm
rather than the 2-norm of the parametér§|©||. is the 1-normy_, |©;):

Fahos) = =3 Hy Wffe))[f = 7H ’

Theorem 3 [Schapire et al. 1998Assume the hypothesis cl@sss a set of hyperplanes iR, and that there
is some distributiorD(z,y) generating examples. For allg , € #, for all v > 0, with probability at least
1 — 4 over the choice of training set of size drawn fromD,

- 1 /logmlogn 1
< =2 z
Er(hep) < Li(hop,v) + O <\/m (7 + log 5))

This bound suggests a strategy that keeps the 1-norm of thenpters low, while trying to classify as many of
the training examples as possible with large margin. It @astown that the AdaBoost algoritHfreund and
Schapire 1997is an effective way of achieving this goal; its applicatiorparsing is described section 5.3.

Input: Examples{(z1,y1) ... (zm,ym)}, GrammarG, representatioh : X x Y — R”
Algorithm: Initialise parameter® to be 0
Fort=1toT, Fori=1tom,
Calculatey = ho(z;) = argmMaX e (z,) ¢(zi, z) - ©
If(y = y:) then do nothing; else if(# y;) then® = © + ¢(zi, yi) — d(zi,y)
Output: Parameter value®

Figure 2: The perceptron algorithm for parsing. It takegasses over the training set.

4.4 Application of Margin Analysis to Parsing

We now consider how the theory for hyperplane classifierst@gply to the linear models for parsing described
in section 2. The method for converting parsing to a margiseldl problem is very similar to the method for
ranking problems described [freund et al. 1998 As a first step, we can define the concept of margin on the
training set, which is analogous to the definition in Eq. 2haf tnargin for hyperplane classifiers:

Yo = min (d(zi,yi) - © — d(z4,y) - ©) /]|©] (5)

i, YyEG (1) y#Yi
The margin on the training set is now the minimum differenegueen the correct tree for a sentence and the

next highest scoring tree for that sentence. The first SVMrélgm described in section 5.2 searches for the
parameter values which give the maximum valuetgr

The bounds in theorems 2 and 3 suggested a tradeoff betwegingehe values foﬁ;(he,b,) andil(h@,b,)
low and keeping the value O/fhigh. For parsing, we suggest the following analogous teondsand Ly

5 _ (i, yi) - © — p(zi,y) - ©
RL(he,y) = Z Gz)| yeo xz):#y H o] < 7] (6)
. B 1 (i, yi) - © — p(wi,y) - O
RLi(he,vy) = Z G (zi)| — ye(‘(gy;éy H [1©]]1 < ’V] (7

The algorithms described in section 5 attempt to find a hyggti® which can achieve low values for these
quantities with a high value fer. The algorithms are direct modifications of algorithms &arhing hyperplane
classifiers for binary classification. The bounds in the@@nand 3 do not apply to the parsing case, but it is
likely that similar theorems apply — we leave this to futurerkv Theorem 6 of Schapire et al. 1998reats a
similar case to the parsing example, and it is likely that this proof holds for the parsing set-up.

5 Algorithms
5.1 A Variant of the Perceptron Algorithm for Parsing

The first algorithm for setting the parameter val@ds the perceptron algorithm, as introduced Bpsenblatt
1954. Figure 2 shows the algorithm. Note that the main computatidifficulty is in calculating) = he(z;)
for each example inturn. For weighted context-free gransitias step can be achieved in polynomial time using
the CKY parsing algorithm. Thus for the weighted CFG repnéstion, the perceptron algorithm is relatively
efficient. Other representations may have to rely on explicalculatingg(z;, z) - © for all z € G(z;), and
hence depend computationally on the number of candidiétes)| fori =1...m

It is useful to define the maximum-achievable margian a separable training set as= maXpcx» Yo =
Ma@Xocsn MM e (e:) wtu: "’(’“’y")'ﬁ’e_l‘f(’”“y)'e. The following theorem can then be stated:
Theorem 4 (Simple modification of theorem frofBlock 1962; Novikoff 1942 see also[Freund
and Schapire 1999. Let {(z1,y1)...(zn,yn)} be a sequence of examples such that Vy €
G(z:), ||6(xs,y:) — o(zi,y)|| < R. Assume the sequence is separable, and take be the maximum
achievable margin on the sequence. Then the number of méstakde by the perceptron algorithm on this
sequence is at mogR /)2
Proof: Simple modification of the proof bjBlock 1962; Novikoff 1962, see alsgFreund and Schapire 1909

Thistheorem implies that if the training sample in figure@parable, and we iterate the algorithm repeatedly
over the training sample (i.€l; — o0), then the algorithm converges to a parameter setting thssifies the
training set with zero errors. Thus we now have an algoritbnmtriaining weighted context-free grammars
which will find a zero error hypothesis if it exists. For exdmphe algorithm would find a weighted grammar
with zero expected error on the example problem in section 3.

5.2 Support Vector Machines

Now consider search for the maximum margin hyperplane ypethesi® with maximum value fotyg (Eg. 5).
It can be showfhVapnik 1998 that the parameter values which give the maximum-margirtigni can be found
by minimizing ||©||? subject to the constrainté, Vy € G(z;) s.t.y # vi, o(xi,y:) - © — ¢(zs,y) - © > 1.
Thus there ar§”; (|G (z;)| — 1) = (3, |G(z;)] — m) constraints.

Next, consider search for a hypothe8isvhich has a low value offL(he, v) (Eq. 6) for some relatively
large value ofy. [Cortes and Vapnik 199Suggest the following constrained optimization problenmimize
119])? + Czi’yeG(zi),#yi e(i,y) subject to the constrainté,Vy € G(z;) s.t.y # yi, ¢(zi,y;) - © —
o(xi,y) - © > 1—e(i,y). Heree(i, y) are a set of “slack variables”. Any examplésy) with ¢(i,y) = 0 are
classified with at least a margin of 1©||; any examples with a positive—valued slack variable arsstfiad
with a margin less than/}|©||. The variableC is a constant which manages the balance between keeping
||©]|? small and the slack variables small. &s— o, the problem becomes the same as the hard-margin SVM
problem, and the method attempts to find a hyperplane whiatectly separates all examples with margin
at least ¥||©|| (i.e., all slack variables are 0). For small@ the training algorithm may “give up” on some
examples (i.e., se{i,y) > 0) in order to keep|©||? low. Thus by varying”, the method effectively modifies
the trade-off between the two terms in the bound in Theorem fractice, a common approach is to train the
model for several values @f, and then to pick the classifier which has best performans®ore held-out set
of development data.

Both kinds of SVM optimization problem have been studieceagively (e.g., sefJoachims 1998; Platt
1999) and can be solved relatively efficiently. (A publicly awdile package for Support Vector Machines,
written by Thorsten Joachims, is available frottp://ais.gmd.de/~ thorsten/svm Jlight/)

5.3 Boosting

The AdaBoost algorithniFreund and Schapire 199% one method for optimizing the bound in The-
orem 3[Schapire et al. 1998 Figure 3 shows the AdaBoost algorithm, altered slightlytisat it
applies to the parsing problem. The algorithm converts thiihg set into a set of triples:7 =
{(zi,yi,y):i=1...m,y € G(z;) s.t.y # y;}. Each membe(z,y1,y2) of T is a triple such that: is

a sentencey; is the correct tree for that sentence, apdis an incorrect tree also proposed B¥(z).
AdaBoost maintains a distributioR? over the training examples such that(z,y1,y») is proportional to
exp{—0- ((;5(3:, 1) — o(x, yz))}. Members of/” which are well discriminated by the current parameter \&lue
© are given low weight by the distribution, whereas exampleistvare poorly discriminated are weighted more
highly. Thes'th component o® hasr; as a measure of how well correlated it is with the currentithistion,

rs = Z(x,yl,yz)g— D(x,y1,92) (gbs(x,yl) — ¢s(x,y2)). The magnitude of; can be taken as a measure of
how correlated ¢s(z, y1) — ¢s(, y2)) is with the distributionD?. If it is highly correlated]r,| will be large,
and thes'th parameter will be useful in driving down the margins oa thore highly weighted members ot

In fact, there is a strong relation between the values 4f and the margin-based bound in Theorem 3. If we
definee; = (1 — |rs,|)/2 then the following theorem holds:

Theorem 5 (Slight Modification of Theorem 5 b&chapire et al. 1998. If we definaEle(he,y) asinEqg. 7,
and the Adaboost algorithm in figure 3 generates valjes, . . . e, then for all~,

T
RLy(he,y) < 27 H V e (1— et
t=1

Input: Examples{(z1,y1) ... (zm,ym)}, GrammarG, representationp : X x Y — R" such thatv(z,y1,y2) € T,
where7 is defined below, fos = 1...n, =1 < (¢s(z,51) — ¢s(x,92)) < 1

Algorithm:
e Define the set of triple¥” as7T = {(zi,yi,y) ;i =1...m,y € G(x;) St.y # yi}
e Setinitial parameter valugd = 0
e Fort=1t0T
— Define a distribution over the training sampleas

1 ¢ @ @@y —d(z.32)

V(o yny) €T, Di(mynve) = i ——aoy—1

whereZ' is a normalization term, i.ez* =3 e~ @O =0@2) /(|G (2)] - 1).

— Fors =1...ncalculaters = Z(m’yl,yz)eTDt(a:,yl, y2) (¢S(x, Y1) — ¢s(x,yz))
Chooses; = arg max |rs|

— Update single parametér,, = ©;, + 1 log (1+rst)

1-rs,

Figure 3: The AdaBoost algorithm applied to parsing.

[Schapire et al. 199&oint out thatifforallt =1...7,¢ < 1/2— 6 (i.e.,|rs,| > 26) for somes > 0, then
the theorem implies that

Rla(ho,y) < (VA= 2T 7@+)57 = f(5.4)"

Itcan be shown that(d, v) is less than one providing that< §: the implicationis thatfor aly < 8, RL1(he,~)
decreases exponentially in the number of iterati@hsSo if the AdaBoost algorithm can successfully maintain
high values ofr,, | for several iterations, it will be successful at minimizifid.1 (he,~) for a relatively large
range ofy, and by implication it will be successful in optimizing theund in Theorem 3. In practice, a set of
held-out data is usually used to optimiZethe number of rounds of boosting.

The algorithm states a restriction on the representatiofor all membersz, y1,y2) of 7,fors =1...n,
(¢s(z,y1) — ¢s(z,y2)) mustbe inthe range1to+1. Thisis not as restrictive as it might seemg if always
strictly positive, it can be rescaled so that its componargsalways between 0 arell. If some components
may be negative, it suffices to rescale the components sdhbatare always between0.5 and+0.5. A
common use of the algorithm, as applied @ollins 2004, is to have thex components of to be the values
of n indicator functions, in which case all valuesgére either 0 or 1, and the condition is satisfied.

5.4 Dual forms of the Perceptron and SVM Algorithms

In the boosting algorithms, the training set was effecyiwgnverted into a set of triple§, (see figure 3). This
setis of sizeM =). |G(x;)| — m. For convenience, in this section we assume thafithelements of/” are
indexed, such thdt’;, y7, 2}) is thej’'th element of 7. We also assume a functiditi, y) which maps a triple
(zi,yi,y) fori=1...m,y € G(z;),y # y;) toitsindexj € 1... M.

Now consider an alternative form for the perceptron algamitshown in figure 4. The algorithm does not
explicitly represent the parameter vec®y but instead maintains weights; over theM examples in the
training set. These “dual” variables; do, however, implicitly define the parameter vec&®rthrough the
identity @ = Z].Ail Q; (gb(x;., y;) — (=}, z’j)). For example, the ranking score for a new exaniple/) can

be calculated as
M

¢($ay) ‘0= Za]' (gb(w},y;) : (b(a:,y) - ¢($;azlj) ' ¢($ay)) (8)

=1

Input: Examples{(z1,y1) ... (zm,ym)}, GrammarG, representatioh : X x Y — R”
Algorithm:
Initialisea; =0forj=1... M
Fort=1toT,
Fori=1tom,

CaICL”atey = arg ma)gGG(zi) Zj:l...M €7 ((JS(Z;, y;) . ¢(I1, Z) - ¢(Z3, 23) . d)(mh Z))
If(y = v:) then do nothing; else if(# y:) thenay i,y = arq,) +1

Output: The dual parameters;. Output on a new senteness
arg ma)&EG(z) Z]' aj (¢($;7 y}) : ¢($, y) - (ﬁ(ﬁ;, Z,') : ¢(1’7 y))

Figure 4: The perceptron algorithm for parsing in dual form.

It can be verified that the algorithm in 4 is completely eqléwnato the perceptron algorithm in 2: we will refer
to the algorithm in 4 as the perceptron algorithm in “duahftr

The dual form is useful because for some representatiomktiddorm algorithm is much more computation-
ally efficient than the usual algorithm. This occurs whenittmer product between two examples, y») and
(z2,y2) (i.e.,¢(x1,y1) - &(x2,y2)) can be computed efficiently, in spite of the representatibring very high
dimensional. See chapter 3[@ristianini and Shawe-Taylor 20Dfbr examples of many such representations.

To illustrate this, we will consider one particular repnasgion as an example. The DOP1 mofbd
1999 describes a representation which keeps track of all subseen in training data. We will consider linear
models with this representation{z, y) has as many components as there are subtrees in training@ddti
tracks the count of each of these subtrees in the exampig. This is a very high dimensional representation,
because in general a tree has an exponential number of esibfflis makes the perceptron algorithm in its
original form (figure 2) prohibitively inefficient — diregticomputing® - ¢(z,y) for some example will take
time linear in the number of subtreesg#(fr, y), an exponential number.

In contrast, it turns out that the dual form algorithm can ppli@d to the problem efficiently. The key to
this is that the inner product between any two tre€sa, y1) - #(x2, y2), can be calculated in polynomial time
using dynamic programming, in spite of the sizepofSee[Collins and Duffy 2001 for details. Armed with a
subroutine which calculateg 1, y1) - ¢(z2, y2) for any two trees efficiently, the dual form algorithm can find
a set of dual parameters which define a separating hyperipldine DOP1 representation space.

The SVM algorithms have a similar dual form: the final hypaib€dmaximum margin hyperplane) can be
expressed through a linear combination of training exam{ae in Eq. 8), and the optimization problem can be
solved through calculations involving inner products bewtraining examples.

6 Conclusions

This paper has described a number of methods for learnitigtetal grammars. All of these methods have
several components in common: the choice of a grammar whatinet the set of candidates for a given
sentence, and the choice of representation of parse tregsora indicating the plausibility of competing parse
trees is taken to be a linear model, the result of the innatymrtbetween a tree’s feature vector and the vector of
model parameters. The only respect in which the methodsrdéffin how the parameter values (the “weights”
on different features) are calculated using a training damp evidence.

Section 4 introduced a framework under which various patamestimation methods could be studied.
This framework included two main components. First, we assgome fixed but unknown distribution over
sentence/parse-tree pairs. Both training and test exaramedrawn from this distribution. Second, we assume
some loss function, which dictates the penalty on test eXesrfpr proposing a parse which is incorrect. We
focused on a simple loss function, where the loss is 0 if tlop@sed parse is identical to the correct parse, 1
otherwise. Under these assumptions, the “quality” of aqrdssts expected loss (expected error rate) on newly

drawn test examples. The goal of learning is to use the trgidata as evidence for choosing a function which
has small expected loss.

A central idea in the analysis of learning algorithms is tfathe margins on examples in training data. We
described theoretical bounds which motivate approachéswettempt classify a large proportion of examples
in training with a large margin. Finally, we described sevatgorithms which can be used to achieve this goal
on the parsing problem.

Acknowledgements.| would like to thank Sanjoy Dasgupta, Yoav Freund, John lfartyy David McAllester,
Rob Schapire and Yoram Singer for answering many of the mumsst have had about the learning theory and
algorithms in this paper. Thanks also to Nigel Duffy, for maiseful discussions while we were collaborating
on the use of kernels for parsing problems.

References

[Abney 1997 Abney, S. (1997). Stochastic attribute-value gramm@eosnputational Linguistics, 2%597-618.

[Block 1964 Block, H. D. 1962. The perceptron: A model for brain functitm Reviews of Modern Physic34, 123-135.

[Bod 1998 Bod, R. 1998 Beyond Grammar: An Experience-Based Theory of Langu@gk| Publications/Cambridge
University Press.

[Booth and Thompson 19¥3ooth, T. L., and Thompson, R. A. 1973. Applying Probabilifgasures to Abstract Lan-
guageslEEE Transactions on ComputetS-22(5), 442—450.

[Collins 2000 Collins, M. (2000). Discriminative Reranking for Naturahhguage Parsing. IRroceedings of the Seven-
teenth International Conference on Machine Learning (ICRIO0) San Francisco: Morgan Kaufmann.

[Collins and Duffy 2001 Collins, M. and Duffy, N. 2001. Parsing with a Single Neur@onvolution Kernels for Natural
Language Problems. Technical Report, University of Califnat Santa Cruz.

[Cortes and Vapnik 1995Cortes, C. and Vapnik, V. 1995. Support—Vector Network$Aachine Learning20(3):273-297.

[Cristianini and Shawe-Taylor 20PCCristianini, N. and Shawe-Taylor, J. 200 introduction to support vector machines
(and other kernel-based learning methadSambridge University Press.

[Della Pietra et al. 1997 Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997)dlrting features of random fieldEEE
Transactions on Pattern Analysis and Machine Intelligeri®e 380-1.593.

[Devroye et. al 1996 Devroye, L., Gyorfi, L., and Lugosi, G. 1998 Probabilistic Theory of Pattern RecognitidBpringer.

[Freund and Schapire 199Freund, Y. and Schapire, R. (1997). A decision-theoretitegaization of on-line learning
and an application to boostingournal of Computer and System Sciené&g1):119-139, August 1997.

[Freund and Schapire 199%reund, Y. and Schapire, R. (1999). Large Margin Classifioatsing the Perceptron Algo-
rithm. In Machine Learning37(3):277—296.

[Freund et al. 1998 Freund, Y., lyer, R.,Schapire, R.E., & Singer, Y. 1998. Afici#nt boosting algorithm for combining
preferences. IMachine Learning: Proceedings of the Fifteenth InternatibConferenceMorgan Kaufmann.

[Hopcroft and Ullman 1979 Hopcroft, J. E., and Ullman, J. D. 197Btroduction to automata theory, languages, and
computation Reading, Mass.: Addison—\Wesley.

[Joachims 1998 Joachims, T. 1998. Making large-Scale SVM Learning Prattla [Scholkopf et al. 1998

[Johnson et al. 1999Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S.9jl98stimators for stochastic
‘unification-based” grammars. IRroceedings of the 37th Annual Meeting of the AssociatiofCfamputational Lin-
guistics San Francisco: Morgan Kaufmann.

[Novikoff 1962 Novikoff, A. B. J. 1962. On convergence proofs on perceranProceedings of the Symposium on the
Mathematical Theory of Automatsol XIl, 615-622.

[Platt 1998 Platt, J. 1998. Fast Training of Support Vector MachinesgiSiequential Minimal Optimization. [8cholkopf
etal. 199%.

[Rosenblatt 1958 Rosenblatt, F. 1958. The Perceptron: A Probabilistic Mddelnformation Storage and Organization
in the Brain.Psychological Reviey65, 386—-408. (Reprinted iNeurocomputingMIT Press, 1998).)

[Schapire et al. 1998Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Bogstie margin: A new explanation for
the effectiveness of voting methode Annals of Statistic26(5):1651-1686.

[Scholkopf et al. 1998 Scholkopf, B., Burges, C., and Smola, A. (eds.). (1998jvances in Kernel Methods — Support
Vector LearningMIT Press.

[Vapnik 1998 Vapnik, V. N. 1998 Statistical Learning TheoryNew York: Wiley.

