
Parameter Estimation for Statistical Parsing Models:
Theory and Practice of Distribution-Free Methods

Michael Collins
AT&T Labs-Research.

mcollins@research.att.com

Abstract
A fundamental problem in statistical parsing is the choice of criteria and algorithms used to estimate the parameters

in a model. The predominant approach in computational linguistics has been to use a parametric model with some
variant of maximum-likelihood estimation. The assumptions under which maximum-likelihood estimation is justified
are arguably quite strong. As an alternative, we propose algorithms based on distribution-free analysis. We describe
two algorithms based on these methods. The first uses boosting algorithms to rerank the output of an existing statistical
parser. The second method uses the Perceptron or Support Vector Machine algorithms.

1 Introduction

A fundamental problem in statistical parsing is the choice of criteria and algorithms used to estimate the

parameters in a model. The predominant approach in computational linguistics has been to use a parametric

model with maximum-likelihood estimation, usually with some method for “smoothing” parameter estimates

to deal with sparse data problems. Methods falling into thiscategory include generative models such as

Probabilistic Context-Free Grammars and Hidden Markov Models, Maximum Entropy models for tagging and

parsing, and recent work on Markov Random Fields.

The first part of this paper discusses the statistical theoryunderlying various parameter-estimation methods.

The assumptions under which maximum-likelihood estimation is justified are arguably quite strong – namely,

that the structure of the process that generated the data is known (for example, maximum likelihood estimation

for PCFGs is justified providing that the data was actually generated by a PCFG). In contrast, work in

computational learning theory has concentrated on models with the weaker assumption that training and test

examples are generated from the same distribution, but thatthe form of the distribution is unknown: in this sense

the results hold across all distributions and are called "distribution-free". The result of this work – which goes

back to results in statistical learning theory by Vapnik andcolleagues, and to work within Valiant’s PAC model

of learning – has been an explosion of algorithms and theory which provide radical alternatives to parametric

maximum-likelihoodmethods. These algorithms are appealing in both theoretical terms, and in their impressive

results in many experimental studies.

The second part of the paper discusses two parsing methods based on distribution-free training methods. The

first uses boosting algorithms to rerank the output of an existing statistical parser. The second method uses the

Perceptron or Support Vector Machine algorithms; a key insight is that these algorithms allow representation

of parse trees through "kernels" – the paper discusses how the kernel trick can be used to give polynomial time

algorithms for models with an exponential number of parameters, such as a representation tracking all subtrees

of a tree (as in the DOP1 model for parsing[Bod 1998]).

2 Linear Models for Parsing

Say we have a context-free grammar (see[Hopcroft and Ullman 1979] for a formal definition)G = (N;Σ; R; S)

whereN is a set of non-terminal symbols,Σ is an alphabet,R is a set of rules of the formX ! Y1Y2 : : : Yn forX;Yi 2 (N [Σ), andS is a distinguished start symbol inN . The grammar defines a set of possible strings,

and possible string/tree pairs, in a language. We useG(x) for all x 2 Σ� to denote the set of possible trees

(parses) for the stringx under the grammar (this set will be empty for strings not generated by the grammar).

A weighted grammarG = (N;Σ; R; S;Θ) also includes a parameter vectorΘ which assigns a weight to each

rule inR. If there aren rules inR, thenΘ 2 <n (we assume that there is some arbitrary orderingr1 : : : rn of

the rules inR, and that thei’th component ofΘ is the weight on ruleri).
Given a sentencex and a treey spanning the sentence, we assume a function�(x; y) which tracks the counts

of the rules in(x; y). Specifically, thei’th component of�(x; y) is the number of times ruleri is seen in(x; y).
Under these definitions, the weighted context-free grammardefines a functionh from sentences to trees:hΘ(x) = arg maxy2G(x)�(x; y) � Θ (1)
FindinghΘ(x), the parse with the largest weight, can be achieved in polynomial time using a variant of the

CKY parsing algorithm (in spite of a possibly exponential number of members ofG(x)).
In this paper we consider the structure of the grammar to be fixed, the learning problem being reduced to

setting the values of the parametersΘ. The basic question is: given a “training sample” of sentence/tree pairsf(x1; y1) : : : (xm; ym)g, what criterion should be used to set the weights in the grammar? A very common

method – that of Probabilistic Context-Free Grammars (PCFGs) – uses the parameters to define a distributionP (x; yjΘ) over possible sentence/tree pairs in the grammar. Maximum likelihood estimation is used to set

the weights. We will consider the assumptions under which this method is justified, and argue that these

assumptions are quite strong. We will also give an example toshow how PCFGs can be badly mislead when

the assumptions are violated. As an alternative we will propose distribution-free methods for estimating the

weights, which are justified under much weaker assumptions,and can give quite different estimates of the

parameter values in some situations.

We would like to generalize weighted context-free grammarsby allowing the representation�(x; y) to be

essentially any feature vector representation of the tree.There is still a grammarG, defining a set of candidatesG(x) for each sentence. The parameters of the parser are a vectorΘ. The parser’s output is defined in the

same way as Eq. 1. The important thing in this generalizationis that the representation� is now not necessarily

directly tied to the productions in the grammar. This is essentially the approach advocated by[Johnson et al.

1999], although the criteria that we will propose for setting the parametersΘ are quite different.

While superficially this might appear to be a minor change, itintroduces two major challenges. The first

is: how should the parameter values be set under these general representations? The PCFG method described

in the next section, which results in simple relative frequency estimators of rule weights, is not applicable to

more general representations. A generalization of PCFGs, Markov Random Fields (MRFs), has been proposed

by several authors[Abney 1997; Johnson et al. 1999; Della Pietra et al. 1997]. This paper gives several

alternatives to MRFs, and describes the theory and assumptions which underly various models.

A second challenge is that now that the parameters are not tied to rules in the grammar the CKY algorithm is

not applicable – in the worst case we may have to enumerate allmembers ofG(x) explicitly to find the highest-

scoring tree. One practical solution is to define the “grammar” G as a first pass statistical parser which allows

dynamic programming to enumerate its topn candidates. A second pass uses the more complex representation� to choose the best of these parses. This is the approach used in [Collins 2000; Collins and Duffy 2001].

3 Probabilistic Context-Free Grammars

This section gives a review of the basic theory behind Probabilistic Context-Free Grammars (PCFGs). Say

we have a context-free grammarG = (N;Σ; R; S) as defined in section 2. We will useT to denote the

set of all trees generated byG. Now say we assign a weightp(r) in the range 0 to 1 to each ruler in R.

Assuming some arbitrary orderingr1 : : : rn of then rules inR, we useΘ to denote a vector of parameters,

Θ = flogp(r1); logp(r2) : : : logp(rn)g. If c(T; r) is the number of times ruler is seen in a treeT , then the

“probability” of a treeT can be written asP (T jΘ) = Yr2R p(r)c(T;r) or equivalently logP (T jΘ) =Xr c(T; r) logp(r) = �(T) � Θ

where we define�(T) to be ann-dimensional vector whosei’th component isc(T; ri).
[Booth and Thompson 1973] give conditions on the weights which ensure thatP (T jΘ) is a valid probability

distribution over the setT , in other words that
PT2T P (T jΘ) = 1, and8T 2 T , P (T jΘ) � 0. The main

condition is that the parameters define conditional distributions over the alternative ways of rewriting each

non-terminal symbol in the grammar. Formally, if we useR(�) to denote the set of rules whose left hand side

is some non-terminal�, then8� 2 N; Pr2R(�) p(r) = 1 and8r 2 R(�); p(r) � 0. Thus the weight

associated with a rule�! � can be interpreted as a conditional probabilityP (�j�) of � rewriting as� (rather

than any of the other alternatives inR(�)).1
We can now study how to train the grammar from a training sample of trees. Say there is a training set of treesfT1; T2 : : : Tmg. The log-likelihoodof the training set given parametersΘ is L(Θ) = Pj logP (Tj jΘ). The

maximum-likelihood estimates are to takeΘ̂ = arg maxΘ2Ω L(Θ), whereΩ is the set of allowable parameter

settings (i.e., the parameter settings which obey the constraints in [Booth and Thompson 1973]). It can

be proved using constrained optimization techniques (i.e., using Lagrange multipliers) that the maximum-

likelihood estimate for the weight of a ruler = � ! � is p(�! �) =Pj c(Tj ; �! �)=Pj c(Tj ; �) (here

we overload the notationc so thatc(�) is the number of times non-terminal� is seen inT). So “learning” in

this case involves taking a simple ratio of frequencies to calculate the weights on rules in the grammar.

So under what circumstances is maximum-likelihood estimation justified? Say there is a true set of weights

Θ�, which define an underlying distributionP (T jΘ�), and that the training set is a sample of sizem from

this distribution. Then it can be shown that asm increases to infinity, then with probability 1 the parameter

estimateŝΘ converge to the “true” parameter valuesΘ�.
To illustrate the deficiencies of PCFGs, we give a simple example. Say we have a random process which

generates just 3 trees, with probabilitiesfp1; p2; p3g, as shown in figure 1(a). The training sample will consist

of a set of trees drawn from this distribution. A test sample will be generated from the same distribution, but

in this case the trees will be hidden, and only the surface strings will be seen (i.e.,haaaai, haaai andhai with

probabilitiesp1; p2; p3 respectively). We would like to learn a weighted CFG with as small error as possible on

a randomly drawn test sample.

As the size of the training sample goes to infinity, the relative frequencies of treesfT1; T2; T3g in the training

sample will converge tofp1; p2; p3g. This makes it easy to calculate the rule weights that maximum-likelihood

estimation converges to – see figure 1(b). We will call the PCFG with these asymptotic weights theasymptotic

PCFG. Notice that the grammar generates trees never seen in training data, shown in figure 1(c). The grammar

is ambiguous for stringshaaaai (bothT1 andT4 are possible) andhaaai (T2 andT5 are possible). In fact, under

certain conditionsT4 andT5 will get higher probabilities under the asymptotic PCFG than T1 andT2, and both

stringshaaaai andhaaai will be misparsed. Figure 1(d) shows the distribution of theasymptotic PCFG over

the 8 trees whenp1 = 0:2; p2 = 0:1 andp3 = 0:7. In this case both ambiguous strings are misparsed by the

asymptotic PCFG, resulting in an expected error rate of(p1 + p2) = 30% on newly drawn test examples.

This is a striking failure of the PCFG when we consider that itis easy to derive weights on the grammar rules

which parse both training and test examples with no errors.2 On this example there exist weighted grammars

which make no errors, but the maximum likelihood estimationmethod will fail to find these weights, even with

unlimited amounts of training data.
1[Booth and Thompson 1973] also give a second, technical condition on the probabilities p(r), which ensures that the probability of a

derivation halting in a finite number of steps is 1.
2Given any finite weights on the rules other thanB ! a, it is possible to set the weightB ! a sufficiently low forT1 andT2 to get

higher scores thanT4 andT5.

(a) T1 S

B

a a

C

a a

T2 S

C

a a a

T3 S

B

a

(b)

Rule No. 1 2 3 4 5 6 7
Rule S! B C S! C S! B B! a a B! a C! a a C! a a a
Asymptotic p1 p2 p3 p1=(p1 + p3) p3=(p1 + p3) p1=(p1 + p2) p2=(p1 + p2)
ML Estimate

(c) T4 S

B

a

C

a a a

T5 S

B

a

C

a a

T6 S

B

a a

C

a a a

T7 S

B

a a

T8 S

C

a a

(d)

Tree T1 T2 T3 T4 T5 T6 T7 T8
Rules Used 1,4,6 2,7 3,5 1,5,7 1,5,6 1,4,7 3,4 2,6
Asymptotic Prob. Estimate 0.0296 0.0333 0.544 0.0519 0.104 0.0148 0.156 0.0667
withp1 = 0:2; p2 = 0:1; p3 = 0:7

Figure 1: (a) Training and test data consists of treesT1, T2 andT3 drawn with probabilitiesp1; p2 andp3.

(b) The ML estimates of rule probabilities converge to simple functions ofp1; p2; p3 as the training size goes

to infinity. (c) The grammar also generatesT4 : : : T8, which are never seen in training or test data. (d) The

probabilities assigned to the trees as the training size goes to infinity, forp1 = 0:2; p2 = 0:1; p3 = 0:7.

4 Theory
This section introduces a general framework for supervisedlearning problems. There are several books[Devroye

et. al 1996; Vapnik 1998; Cristianini and Shawe-Taylor 2000] which cover the material in detail. We will use

this framework to analyze both parametric methods (PCFGs, for example), and the distribution–free methods

proposed in this paper. We assume the following:� An input domainX and an output domainY . The task will be to learn a function mappingX to Y . In

parsing,X is a set of possible sentences andY is a set of possible trees.� There is some underlying probability distributionD(x; y) overX � Y . The distribution is used to generate

both training and test examples. It is an unknown distribution, but it is constant across training and test

examples.� There is a loss functionL(y; ŷ)which measures the cost of proposing an output ˆy when the “true” output isy.

A commonly used cost is the 0-1 lossL(y; ŷ) = 0 if y = ŷ, andL(y; ŷ) = 1 otherwise. We will concentrate

on this loss function in this paper.� Given a functionh fromX to Y , its expected lossisEr(h) =Px;yD(x; y)L(y; h(x)). Under 0-1 loss this

is the expected proportion of errors that the hypothesis makes on examples drawn from the distributionD.

We would like to learn a function whose expected loss is as lowas possible –Er(h) is a measure of how

successful a functionh is. Unfortunately, because we do not have direct access to the distributionD, we

cannot explicitly calculate the expected loss of a hypothesis.� The training set is a sample ofm pairs f(x1; y1); : : : ; (xm; ym)g drawn from the distributionD. This

is the only information we have aboutD. The empirical lossof a functionh on the training sample isÊr(h) = 1mPi L(yi; h(xi)).
A useful concept is theBayes Optimalhypothesis, which we will denote ashB . It is defined ashB(x) =

arg maxy2Y D(x; y). The Bayes optimal hypothesis simply outputs the most likely y under the distributionD
for each inputx. It is easy to prove that this function minimizes the expected lossEr(h) over the space of all

possible functions – the Bayes optimal hypothesis cannot beimproved upon. Unfortunately, in general we do

not knowD(x; y), so the Bayes optimal hypothesis, while useful as a theoretical construct, cannot be obtained

directly in practice. Given that the only access to the distributionD(x; y) is indirect, through a training sample

of finite sizem, the learning problem is to find a hypothesis whose expected risk is low, using only the training

sample as evidence.

4.1 Parametric Models
Parametric models attempt to solve the supervised learningproblem by explicitly modeling either the joint

distributionD(x; y) or the conditional distributionsD(yjx) for all x.

In the joint distribution case, there is a parameterized probability distributionP (x; yjΘ). As the parameter

valuesΘ are varied the distribution will also vary. The parameter spaceΩ is a set of possible parameter values

for whichP (x; yjΘ) is a well-defined distribution (i.e., for which
Px;y P (x; yjΘ) = 1).

A crucial assumption in parametric approaches is that thereis someΘ� 2 Ω such thatD(x; y) = P (x; yjΘ�).
In other words, we assume thatD is a member of the set of distributions under consideration.Now say we

have a training samplef(x1; y1) : : : (xm; ym)g drawn fromD(x; y). A common estimation method is to set

the parameters to the maximum-likelihood estimates,Θ̂ = arg max
Pi logP (xi; yijΘ). Under the assumption

thatD(x; y) = P (x; yjΘ�) for someΘ� 2 Ω, for a wide class of distributions it can be shown thatP (x; yjΘ̂)
converges toD(x; y) in the limit as the training sizem goes to infinity. Because of this, if we consider the

function ĥ(x) = arg maxy2Y P (x; yjΘ̂), then in the limitĥ(x) will converge to the Bayes optimal functionhB(x). So under the assumption thatD(x; y) = P (x; yjΘ�) for someΘ� 2 Ω, and with infinite amounts of

training data, the maximum-likelihood method is provably optimal.

Methods which model the conditional distributionD(yjx) are similar. The parameters now define a

conditional distributionP (yjx;Θ). The assumption is that there is someΘ� such that8x; D(yjx) =P (yjx;Θ�). Maximum-likelihood estimates can be defined in a similar way, and in this case the functionĥ(x) = arg maxy2Y P (yjx; Θ̂) will converge to the Bayes optimal functionhB(x) as the sample size goes to

infinity.

4.2 An Overview of Distribution-Free Methods
From the arguments in the previous section, parametric methods are optimalproviding that the distribution

generating the data is in the class of distributions being considered. But what happens if this assumption is

violated? In this case there are no guarantees on the expected error rate of the maximum-likelihoodmethod. The

example in section 3 shows how maximum-likelihood estimation can be badly mislead when the distribution

generating the data is not in the class being considered.

This paper proposes alternatives to maximum-likelihood methods which give theoretical guarantees without

making the assumption that the distribution generating thedata comes from some predefined class. The only

assumption is that the same distribution generates both training and test examples. These methods also provide

bounds on how many training samples are required for learning, dealing with the case where there is only a

finite amount of training data. Thus the methods address a second weakness of the parametric approach:the

guarantees of ML estimation are asymptotic, holding only inthe limit as the training data size goes to infinity.

A crucial idea in distribution-free learning is that of ahypothesis space. This is a set of functions under

consideration, each member of the set being a functionh : X ! Y . For example, in weighted context-free

grammars the hypothesis space isH = fhΘ(x) = arg maxy2G(x) �(x; y) � Θ : Θ 2 <ng. So each possible

parameter setting defines a different function from sentences to trees, andH is the infinite set of all such

functions asΘ ranges over the parameter space<n.

Learning is then usually framed as the task of choosing a “good” function inH on the basis of a training sam-

ple as evidence. Recall the definition of the expected error of a hypothesisEr(h) =Px;yD(x; y)L(y; h(x)).
We will use h� to denote the “best” function inH by this measure,h� = arg minh2HEr(h) =
arg minh2HPx;yD(x; y)L(y; h(x)). A first learning method to study is as follows. Given a training sample(xi; yi) for i = 1 : : :m, the method simply chooses the hypothesis with minimum empirical error, that isĥ = arg minh2H Êr(h) = arg minh2H 1mPi L(yi; h(xi)). This strategy is called “Empirical Risk Minimiza-

tion” by Vapnik [Vapnik 1998]. Two questions which arise are:� In the limit, as the training size goes to infinity, does the error of the ERM methodEr(ĥ) approach the error

of the best function in the set,Er(h�), regardless of the underlying distributionD(x; y)? In other words, is

this method of choosing a hypothesis always consistent?

The answer to this depends on the nature of the hypothesis spaceH. For finite hypothesis spaces the ERM

method is always consistent. For many infinite hypothesis spaces, such as the weighted grammar example

above, the method is also consistent. However, some infinitehypothesis spaces can lead to the method being

inconsistent – specifically, if a measure called the VC dimension[Vapnik 1998] of H is infinite, the ERM

method may be inconsistent. Intuitively, the VC dimension can be thought of as a measure of the complexity

of an infinite set of hypotheses.� If the method is consistent, how quickly doesEr(ĥ) converge toEr(h�)? In other words, how much training

data is needed to have a good chance of getting close to the best function inH? We will see in the next

section that the convergence rate depends on various measures of the “size” of the hypothesis space. For

finite sets, the rate of convergence depends directly upon the size ofH. For infinite sets, several measures

have been proposed – we will concentrate on rates of convergence based on a concept called themarginof a

hypothesis on training examples.

4.3 Convergence Results for Hyperplane Classifiers
This section describes analysis applied for binary classifiers, where the setY = f�1;+1g. We consider

hyperplane classifiers, where a linear separator in some feature space is used to separate examples into the two

classes. Hyperplane classifiers go back to one of the earliest learning algorithms, the Perceptron algorithm
[Rosenblatt 1958]. There has been a large amount of effort devoted to the theoryof hyperplane classifiers.

They are similar to the linear models for parsing we proposedin section 2 (in fact the framework of section 2

can be viewed as a generalization of hyperplane classifiers). We will initially review some results applying to

linear classifiers, and then discuss how various results maybe applied to parsing.

We will discuss a hypothesis space ofn-dimensional hyperplane classifiers, defined as follows:� Each instancex is represented as a vector�(x) in <n.� For given parameter valuesΘ 2 <n and a bias parameterb 2 <, the output of the classifier ishΘ;b(x) =
sign

��(x) � Θ + b� where sign(z) is +1 if z � 0, �1 otherwise. There is a clear geometric interpretation

of this classifier. The points�(x) are inn-dimensional Euclidean space. The parametersΘ; b define a

hyperplane through the space, the hyperplane being the set of pointsz such that(z � Θ + b) = 0. This is a

hyperplane with normalΘ, at distanceb=jjΘjj from the origin. This hyperplane is used to classify points:all

points falling on one side of the hyperplane are classified as+1, points on the other side are classified as�1.� The hypothesis space is the set of all hyperplanes,H = fhΘ;b(x) : Θ 2 <n; b 2 <g.
It can be shown that the ERM method is consistent for hyperplanes, through a method called VC analysis

[Vapnik 1998]. We will not go into details here, but roughly speaking, the VC-dimension of a hypothesis space

is a measure of its size or complexity. A set of hyperplanes in<n has VC dimension of(n + 1). For any

hypothesis space with finite VC dimension the ERM method is consistent.

An alternative to VC-analysis is to analyse hyperplanes through properties of “margins” on training examples.

First consider the case where a training samplef(x1; y1) : : : (xm; ym)g is “linearly separable” – there is a

hyperplane which achieves 0 errors on the training data. Then for each hyperplane with 0 error (there will in

general be more than one), themarginon the training set for hyperplanehΘ;b is defined as3Θ;b = mini yi ��(xi) � Θ + b�jjΘjj (2)
3jjΘjj is the Euclidean norm,

qPj Θ2j

The marginΘ;b has a simple geometric interpretation: it is the minimum distance of any training point to the

hyperplane defined byΘ; b. The following theorem then holds:

Theorem 1 Special case of[Cristianini and Shawe-Taylor 2000] Theorem 4.19. Assume the hypothesis classH is a set of hyperplanes, and that there is some distributionD(x; y) generating examples. LetR be a constant

such that8x; jj�(x)jj � R. For all hΘ;b 2 H with zero error on the training sample, with probability at least

1� � over the choice of training set of sizem drawn fromD,Er(hΘ;b) �vuut cm R22
Θ;b log2m+ log

1�!
wherec is a constant.

The bound is minimized for the hyperplane with maximum margin (i.e., maximum value forΘ;b) on the training

sample. This bound suggests that if the training data is separable, the hyperplane with maximum margin should

be chosen as the hypothesis with the best bound on its expected error. It can be shown that the maximum margin

hyperplane is unique, and can be found efficiently using algorithms described in section 5.2. Search for the

maximum-margin hyperplane is the basis of “Support Vector Machines” (hard-margin version)[Vapnik 1998].

The previous theorem does not apply when the training data cannot be classified with 0 errors by a hyperplane.

There is, however, a similar theorem that can be applied in the non-separable case. First, defineL̂(hΘ;b;) to

be the proportion of examples on training data with margin less than for the hyperplanehΘ;b:L̂(hΘ;b;) = 1mXi ""yi ��(xi) �Θ + b�jjΘjj < ## (3)
The following theorem can now be stated:

Theorem 2 [Cristianini and Shawe-Taylor 2000] Theorem 4.19. Assume the hypothesis classH is a set of

hyperplanes, and that there is some distributionD(x; y) generating examples. LetR be a constant such that8x; jj�(x)jj � R. For all hΘ;b 2 H, for all > 0, with probability at least1� � over the choice of training set

of sizem drawn fromD, Er(hΘ;b) � L̂(hΘ;b;) +s cm �R22
log2m+ log

1��
wherec is a constant.

This result is important in cases where a large proportion oftraining samples can be classified with relatively

large margin, but a relatively small number of outliers makethe problem inseparable, or force a small margin.

The result suggests that in some cases a few examples are worth “giving up on”, resulting in the first term in the

bound being larger than 0, but the second term being much smaller due to a larger value for. Thesoft margin

version of Support Vector Machines[Cortes and Vapnik 1995], described in section 5.2, attempts to explicitly

manage the trade-off between the two terms in the bound.

A similar bound, due to[Schapire et al. 1998], involves a margin definition which depends on the 1-norm

rather than the 2-norm of the parametersΘ (jjΘjj1 is the 1-norm,
Pj jΘj j):L̂1(hΘ;b;) = 1mXi ""yi ��(xi) � Θ + b�jjΘjj1 < ## (4)

Theorem 3 [Schapire et al. 1998] Assume the hypothesis classH is a set of hyperplanes in<n, and that there

is some distributionD(x; y) generating examples. For allhΘ;b 2 H, for all > 0, with probability at least

1� � over the choice of training set of sizem drawn fromD,Er(hΘ;b) � L̂1(hΘ;b;) +O s 1m �
logm logn2

+ log
1��!

This bound suggests a strategy that keeps the 1-norm of the parameters low, while trying to classify as many of

the training examples as possible with large margin. It can be shown that the AdaBoost algorithm[Freund and

Schapire 1997] is an effective way of achieving this goal; its application to parsing is described section 5.3.

Input: Examplesf(x1; y1) : : : (xm; ym)g, GrammarG, representation� : X � Y ! <n
Algorithm: Initialise parametersΘ to be 0

For t = 1 toT , For i = 1 tom,
Calculatey = hΘ(xi) = arg maxz2G(xi) �(xi; z) � Θ
If(y = yi) then do nothing; else if(y 6= yi) thenΘ = Θ + �(xi; yi)� �(xi; y)

Output: Parameter valuesΘ

Figure 2: The perceptron algorithm for parsing. It takesT passes over the training set.

4.4 Application of Margin Analysis to Parsing
We now consider how the theory for hyperplane classifiers might apply to the linear models for parsing described

in section 2. The method for converting parsing to a margin-based problem is very similar to the method for

ranking problems described in[Freund et al. 1998]. As a first step, we can define the concept of margin on the

training set, which is analogous to the definition in Eq. 2 of the margin for hyperplane classifiers:Θ = mini;y2G(xi);y 6=yi ��(xi; yi) �Θ � �(xi; y) �Θ
� =jjΘjj (5)

The margin on the training set is now the minimum difference between the correct tree for a sentence and the

next highest scoring tree for that sentence. The first SVM algorithm described in section 5.2 searches for the

parameter values which give the maximum value forΘ.

The bounds in theorems 2 and 3 suggested a tradeoff between keeping the values for̂L(hΘ;b;)andL̂1(hΘ;b;)
low and keeping the value of high. For parsing, we suggest the following analogous termsto L̂ andL̂1:R̂L(hΘ;) = 1mXi 1jG(xi)j � 1

Xy2G(xi);y 6=yi ���(xi; yi) �Θ � �(xi; y) � ΘjjΘjj < �� (6)R̂L1(hΘ;) = 1mXi 1jG(xi)j � 1

Xy2G(xi);y 6=yi ���(xi; yi) �Θ � �(xi; y) � ΘjjΘjj1 < �� (7)

The algorithms described in section 5 attempt to find a hypothesisΘ which can achieve low values for these

quantities with a high value for. The algorithms are direct modifications of algorithms for learning hyperplane

classifiers for binary classification. The bounds in theorems 2 and 3 do not apply to the parsing case, but it is

likely that similar theorems apply – we leave this to future work. Theorem 6 of[Schapire et al. 1998] treats a

similar case to the parsing example, and it is likely that this this proof holds for the parsing set-up.

5 Algorithms

5.1 A Variant of the Perceptron Algorithm for Parsing
The first algorithm for setting the parameter valuesΘ is the perceptron algorithm, as introducedby[Rosenblatt

1958]. Figure 2 shows the algorithm. Note that the main computational difficulty is in calculatingy = hΘ(xi)
for each example in turn. For weighted context-freegrammars this step can be achieved in polynomial time using

the CKY parsing algorithm. Thus for the weighted CFG representation, the perceptron algorithm is relatively

efficient. Other representations may have to rely on explicitly calculating�(xi; z) � Θ for all z 2 G(xi), and

hence depend computationally on the number of candidatesjG(xi)j for i = 1 : : :m.

It is useful to define the maximum-achievable margin on a separable training set as = maxΘ2<n Θ =
maxΘ2<n mini;y2G(xi);y 6=yi �(xi;yi)�Θ��(xi;y)�ΘjjΘjj . The following theorem can then be stated:

Theorem 4 (Simple modification of theorem from[Block 1962; Novikoff 1962], see also [Freund

and Schapire 1999]). Let f(x1; y1) : : : (xn; yn)g be a sequence of examples such that8i; 8y 2G(xi); jj�(xi; yi)� �(xi; y)jj � R. Assume the sequence is separable, and take to be the maximum

achievable margin on the sequence. Then the number of mistakes made by the perceptron algorithm on this

sequence is at most(R=)2.

Proof: Simple modification of the proof by[Block 1962; Novikoff 1962], see also[Freund and Schapire 1999].

This theorem implies that if the training sample in figure 2 isseparable, and we iterate the algorithm repeatedly

over the training sample (i.e.,T ! 1), then the algorithm converges to a parameter setting that classifies the

training set with zero errors. Thus we now have an algorithm for training weighted context-free grammars

which will find a zero error hypothesis if it exists. For example, the algorithm would find a weighted grammar

with zero expected error on the example problem in section 3.

5.2 Support Vector Machines
Now consider search for the maximum margin hyperplane, the hypothesisΘ with maximum value forΘ (Eq. 5).

It can be shown[Vapnik 1998] that the parameter values which give the maximum-margin solution can be found

by minimizing jjΘjj2 subject to the constraints8i;8y 2 G(xi) s.t. y 6= yi; �(xi; yi) � Θ � �(xi; y) � Θ � 1.

Thus there are
Pi(jG(xi)j � 1) = �Pi jG(xi)j �m� constraints.

Next, consider search for a hypothesisΘ which has a low value ofR̂L(hΘ;) (Eq. 6) for some relatively

large value of. [Cortes and Vapnik 1995] suggest the following constrained optimization problem: minimizejjΘjj2 + CPi;y2G(xi);y 6=yi �(i; y) subject to the constraints8i;8y 2 G(xi) s.t. y 6= yi; �(xi; yi) � Θ ��(xi; y) � Θ � 1� �(i; y). Here�(i; y) are a set of “slack variables”. Any examples(i; y) with �(i; y) = 0 are

classified with at least a margin of 1=jjΘjj; any examples with a positive–valued slack variable are classified

with a margin less than 1=jjΘjj. The variableC is a constant which manages the balance between keepingjjΘjj2 small and the slack variables small. AsC !1, the problem becomes the same as the hard-margin SVM

problem, and the method attempts to find a hyperplane which correctly separates all examples with margin

at least 1=jjΘjj (i.e., all slack variables are 0). For smallerC, the training algorithm may “give up” on some

examples (i.e., set�(i; y) > 0) in order to keepjjΘjj2 low. Thus by varyingC, the method effectively modifies

the trade-off between the two terms in the bound in Theorem 2.In practice, a common approach is to train the

model for several values ofC, and then to pick the classifier which has best performance onsome held-out set

of development data.

Both kinds of SVM optimization problem have been studied extensively (e.g., see[Joachims 1998; Platt

1998]) and can be solved relatively efficiently. (A publicly available package for Support Vector Machines,

written by Thorsten Joachims, is available fromhttp://ais.gmd.de/˜ thorsten/svm light/ .)

5.3 Boosting
The AdaBoost algorithm[Freund and Schapire 1997] is one method for optimizing the bound in The-

orem 3 [Schapire et al. 1998]. Figure 3 shows the AdaBoost algorithm, altered slightly sothat it

applies to the parsing problem. The algorithm converts the training set into a set of triples:T =f(xi; yi; y) : i = 1 : : :m; y 2 G(xi) s.t. y 6= yig. Each member(x; y1; y2) of T is a triple such thatx is

a sentence,y1 is the correct tree for that sentence, andy2 is an incorrect tree also proposed byG(x).
AdaBoost maintains a distributionDt over the training examples such thatDt(x; y1; y2) is proportional to

expf�Θ � ��(x; y1)� �(x; y2)�g. Members ofT which are well discriminated by the current parameter values

Θ are given low weight by the distribution, whereas examples which are poorly discriminated are weighted more

highly. Thes’th component ofΘ hasrs as a measure of how well correlated it is with the current distribution,rs = P(x;y1;y2)2T Dt(x; y1; y2) ��s(x; y1)� �s(x; y2)�. The magnitude ofrs can be taken as a measure of

how correlated
��s(x; y1)� �s(x; y2)� is with the distributionDt. If it is highly correlated,jrsj will be large,

and thes’th parameter will be useful in driving down the margins on the more highly weighted members ofT .

In fact, there is a strong relation between the values ofjrsj, and the margin-based bound in Theorem 3. If we

define�t = (1� jrst j)=2 then the following theorem holds:

Theorem 5 (Slight Modification of Theorem 5 of[Schapire et al. 1998]). If we defineR̂L1(hΘ;) as in Eq. 7,

and the Adaboost algorithm in figure 3 generates values�1; �2; : : : �T , then for all,R̂L1(hΘ;) � 2T TYt=1

q�1�t (1� �t)1+

Input: Examplesf(x1; y1) : : : (xm; ym)g, GrammarG, representation� : X � Y ! <n such that8(x; y1; y2) 2 T ;
whereT is defined below, fors = 1 : : : n, �1� ��s(x; y1)� �s(x; y2)� � 1

Algorithm:� Define the set of triplesT asT = f(xi; yi; y) : i = 1 : : :m; y 2 G(xi) s.t. y 6= yig� Set initial parameter valuesΘ = 0� For t = 1 toT
– Define a distribution over the training sampleT as8(x; y1; y2) 2 T ; Dt(x; y1; y2) = 1Zt e�Θ�(�(x;y1)��(x;y2))jG(x)j � 1

whereZt is a normalization term, i.e.,Zt =P(x;y1;y2)2T e�Θ�(�(x;y1)��(x;y2))=(jG(x)j � 1).
– Fors = 1 : : : n calculaters =P(x;y1;y2)2T Dt(x; y1; y2) ��s(x; y1)� �s(x; y2)�
– Choosest = arg maxs jrsj
– Update single parameterΘst = Θst + 1

2 log
�

1+rst
1�rst �

Figure 3: The AdaBoost algorithm applied to parsing.

[Schapire et al. 1998] point out that if for allt = 1 : : : T , �t � 1=2� � (i.e., jrst j � 2�) for some� > 0, then

the theorem implies thatR̂L1(hΘ;) � �p(1� 2�)1�(1+ 2�)1+�T = f(�;)T
It can be shown thatf(�;) is less than one providing that < �: the implication is that for all < �, R̂L1(hΘ;)
decreases exponentially in the number of iterations,T . So if the AdaBoost algorithm can successfully maintain

high values ofjrst j for several iterations, it will be successful at minimizinĝRL1(hΘ;) for a relatively large

range of, and by implication it will be successful in optimizing the bound in Theorem 3. In practice, a set of

held-out data is usually used to optimizeT , the number of rounds of boosting.

The algorithm states a restriction on the representation�. For all members(x; y1; y2) of T , for s = 1 : : : n,��s(x; y1)� �s(x; y2)�must be in the range�1 to+1. This is not as restrictive as it might seem. If� is always

strictly positive, it can be rescaled so that its componentsare always between 0 and+1. If some components

may be negative, it suffices to rescale the components so thatthey are always between�0:5 and+0:5. A

common use of the algorithm, as applied in[Collins 2000], is to have then components of� to be the values

of n indicator functions, in which case all values of� are either 0 or 1, and the condition is satisfied.

5.4 Dual forms of the Perceptron and SVM Algorithms

In the boosting algorithms, the training set was effectively converted into a set of triples,T (see figure 3). This

set is of sizeM =Pi jG(xi)j �m. For convenience, in this section we assume that theM elements ofT are

indexed, such that(x0j ; y0j ; z0j) is thej’th element ofT . We also assume a functionI(i; y) which maps a triple(xi; yi; y) (for i = 1 : : :m; y 2 G(xi); y 6= yi) to its indexj 2 1 : : :M .

Now consider an alternative form for the perceptron algorithm, shown in figure 4. The algorithm does not

explicitly represent the parameter vectorΘ, but instead maintains weights�j over theM examples in the

training set. These “dual” variables�j do, however, implicitly define the parameter vectorΘ, through the

identity Θ =PMj=1�j ��(x0j ; y0j)� �(x0j ; z0j)�. For example, the ranking score for a new example(x; y) can

be calculated as �(x; y) � Θ = MXj=1

�j ��(x0j ; y0j) � �(x; y)� �(x0j ; z0j) � �(x; y)� (8)

Input: Examplesf(x1; y1) : : : (xm; ym)g, GrammarG, representation� : X � Y ! <n
Algorithm:
Initialise�j = 0 for j = 1 : : :M
For t = 1 toT ,

For i = 1 tom,
Calculatey = arg maxz2G(xi)Pj=1:::M �j ��(x0j ; y0j) � �(xi; z)� �(x0j; z0j) � �(xi; z)�
If(y = yi) then do nothing; else if(y 6= yi) then�I(i;y) = �I(i;y) + 1

Output: The dual parameters�j . Output on a new sentencex is
arg maxy2G(x)Pj �j ��(x0j; y0j) � �(x; y)� �(x0j; z0j) � �(x; y)�

Figure 4: The perceptron algorithm for parsing in dual form.

It can be verified that the algorithm in 4 is completely equivalent to the perceptron algorithm in 2: we will refer

to the algorithm in 4 as the perceptron algorithm in “dual form”.

The dual form is useful because for some representations thedual form algorithm is much more computation-

ally efficient than the usual algorithm. This occurs when theinner product between two examples(x1; y2) and(x2; y2) (i.e.,�(x1; y1) � �(x2; y2)) can be computed efficiently, in spite of the representation� being very high

dimensional. See chapter 3 of[Cristianini and Shawe-Taylor 2000] for examples of many such representations.

To illustrate this, we will consider one particular representation as an example. The DOP1 model[Bod

1998] describes a representation which keeps track of all subtrees seen in training data. We will consider linear

models with this representation:�(x; y) has as many components as there are subtrees in training data, and it

tracks the count of each of these subtrees in the example(x; y). This is a very high dimensional representation,

because in general a tree has an exponential number of subtrees. This makes the perceptron algorithm in its

original form (figure 2) prohibitively inefficient – directly computingΘ � �(x; y) for some example will take

time linear in the number of subtrees of�(x; y), an exponential number.

In contrast, it turns out that the dual form algorithm can be applied to the problem efficiently. The key to

this is that the inner product between any two trees,�(x1; y1) � �(x2; y2), can be calculated in polynomial time

using dynamic programming, in spite of the size of�. See[Collins and Duffy 2001] for details. Armed with a

subroutine which calculates�(x1; y1) � �(x2; y2) for any two trees efficiently, the dual form algorithm can find

a set of dual parameters which define a separating hyperplanein the DOP1 representation space.

The SVM algorithms have a similar dual form: the final hypothesis (maximum margin hyperplane) can be

expressed through a linear combination of training examples (as in Eq. 8), and the optimization problem can be

solved through calculations involving inner products between training examples.

6 Conclusions

This paper has described a number of methods for learning statistical grammars. All of these methods have

several components in common: the choice of a grammar which defines the set of candidates for a given

sentence, and the choice of representation of parse trees. Ascore indicating the plausibility of competing parse

trees is taken to be a linear model, the result of the inner product between a tree’s feature vector and the vector of

model parameters. The only respect in which the methods differ is in how the parameter values (the “weights”

on different features) are calculated using a training sample as evidence.

Section 4 introduced a framework under which various parameter estimation methods could be studied.

This framework included two main components. First, we assume some fixed but unknown distribution over

sentence/parse-tree pairs. Both training and test examples are drawn from this distribution. Second, we assume

some loss function, which dictates the penalty on test examples for proposing a parse which is incorrect. We

focused on a simple loss function, where the loss is 0 if the proposed parse is identical to the correct parse, 1

otherwise. Under these assumptions, the “quality” of a parser is its expected loss (expected error rate) on newly

drawn test examples. The goal of learning is to use the training data as evidence for choosing a function which

has small expected loss.

A central idea in the analysis of learning algorithms is thatof the margins on examples in training data. We

described theoretical bounds which motivate approaches which attempt classify a large proportion of examples

in training with a large margin. Finally, we described several algorithms which can be used to achieve this goal

on the parsing problem.

Acknowledgements.I would like to thank Sanjoy Dasgupta,Yoav Freund, John Langford,David McAllester,

Rob Schapire and Yoram Singer for answering many of the questions I have had about the learning theory and

algorithms in this paper. Thanks also to Nigel Duffy, for many useful discussions while we were collaborating

on the use of kernels for parsing problems.

References
[Abney 1997] Abney, S. (1997). Stochastic attribute-value grammars.Computational Linguistics, 23, 597-618.
[Block 1962] Block, H. D. 1962. The perceptron: A model for brain functioning. Reviews of Modern Physics, 34, 123–135.
[Bod 1998] Bod, R. 1998.Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge

University Press.
[Booth and Thompson 1973] Booth, T. L., and Thompson, R. A. 1973. Applying ProbabilityMeasures to Abstract Lan-

guages.IEEE Transactions on Computers, C-22(5), 442–450.
[Collins 2000] Collins, M. (2000). Discriminative Reranking for Natural Language Parsing. InProceedings of the Seven-

teenth International Conference on Machine Learning (ICML2000). San Francisco: Morgan Kaufmann.
[Collins and Duffy 2001] Collins, M. and Duffy, N. 2001. Parsing with a Single Neuron:Convolution Kernels for Natural

Language Problems. Technical Report, University of California at Santa Cruz.
[Cortes and Vapnik 1995] Cortes, C. and Vapnik, V. 1995. Support–Vector Networks. InMachine Learning, 20(3):273-297.
[Cristianini and Shawe-Taylor 2000] Cristianini, N. and Shawe-Taylor, J. 2000.An introduction to support vector machines

(and other kernel-based learning methods). Cambridge University Press.
[Della Pietra et al. 1997] Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19, 380–1.593.
[Devroye et. al 1996] Devroye, L., Gyorfi, L., and Lugosi, G. 1996.A Probabilistic Theory of Pattern Recognition. Springer.
[Freund and Schapire 1997] Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting.Journal of Computer and System Sciences, 55(1):119–139, August 1997.
[Freund and Schapire 1999] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algo-

rithm. In Machine Learning, 37(3):277–296.
[Freund et al. 1998] Freund, Y., Iyer, R.,Schapire, R.E., & Singer, Y. 1998. An efficient boosting algorithm for combining

preferences. InMachine Learning: Proceedings of the Fifteenth International Conference. Morgan Kaufmann.
[Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979.Introduction to automata theory, languages, and

computation. Reading, Mass.: Addison–Wesley.
[Joachims 1998] Joachims, T. 1998. Making large-Scale SVM Learning Practical. In [Scholkopf et al. 1998].
[Johnson et al. 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic

‘unification-based” grammars. InProceedings of the 37th Annual Meeting of the Association for Computational Lin-
guistics. San Francisco: Morgan Kaufmann.

[Novikoff 1962] Novikoff, A. B. J. 1962. On convergence proofs on perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, Vol XII, 615–622.

[Platt 1998] Platt, J. 1998. Fast Training of Support Vector Machines using Sequential Minimal Optimization. In[Scholkopf
et al. 1998].

[Rosenblatt 1958] Rosenblatt, F. 1958. The Perceptron: A Probabilistic Modelfor Information Storage and Organization
in the Brain.Psychological Review, 65, 386–408. (Reprinted inNeurocomputing(MIT Press, 1998).)

[Schapire et al. 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for
the effectiveness of voting methods.The Annals of Statistics, 26(5):1651-1686.

[Scholkopf et al. 1998] Scholkopf, B., Burges, C., and Smola, A. (eds.). (1998).Advances in Kernel Methods – Support
Vector Learning, MIT Press.

[Vapnik 1998] Vapnik, V. N. 1998.Statistical Learning Theory. New York: Wiley.

