Optimal Streaming Feature Selection

Bob Stine and Dean Foster Dept of Statistics, Wharton School University of Pennsylvania

Plan

- Streaming feature selection
 - What it is, why it's useful,
 - Variable selection problems introduced
- Alpha investing
 - Controls expected number false positives
 - Test a possibly infinite sequence of hypotheses
 - Flexibility presents many alternatives
- Optimal method
 - Universal spending rule
 - Compare performance to oracles

Streaming Feature Selection

- Context
 - L₀ variable selection
 - Eg: Picking variables for a regression model $\hat{y} = b_0 + b_1 x_1 + ... + b_k x_k + ?$
- Streaming selection
 - External source offers new feature z
 - Judge whether to add to model or not
- Novelties
 - Choice of z may depend on prior outcomes Construction of interactions, transformations
 - Don't require full X matrix at start of search Data base query, text mining, ...
 - Can be done very fast compared to stepwise

Over-Fitting?

- Control fitting process
 - Wide data set permits choice among many
 - Unbounded set of rules to make new features
- Cross-validation
 - Less data to fit model, estimate parameters
 - Time to repeat fitting process
- Hypothesis testing, p-value based
 - Requires computing 'honest' p-values
 - FDR requires full set of p-values
 - Alpha-investing tests sequence one-at-a-time...

Alpha-Investing

- Testing sequence of hypotheses H_1, H_2, \ldots
- Alpha wealth
 - Start with allowance $W_1 = \omega$ for Type I error
 - 'Invest' $0 \le \alpha_i \le W_i$ in test of H_i
 - Compute p-value pi of test of H_i
 - Test determines wealth available for testing H_{i^+1} $W_{i^+1} = W_i \alpha_i + \omega \; I\{p_i \le \alpha_i\}$

Comments

- Controls mFDR
- Resembles alpha-spending rule
- Can replicate Bonferroni, FDR, ...

Optimal Alpha Investing

- Question
 - How much of the current wealth W_i should one invest in the test of H_i?
- Answer
 - It depends! Easy to start thinking strategically
 - If expect a 'good variable', set α_i close to W_i to earn more for later tests

... but ...

If variables are 'really good', can test with small $\alpha_i \approx 0$ and still reject and have more for later

• Wrong issue

• Ought to be thinking about the choice of the next variable z rather than the amount

Problem

• Estimators

- Test *n* hypotheses $H_i: \mu_i = 0 \text{ vs } \mu_i \neq 0$
- Tests define estimators 'testimator'

• Goal: accumulate minimal risk over *n* tests

Risk versus counting 'correct rejections'

- Class of strategies
 - Monotone spending rules that set $\alpha_{i^{+}1} \leq \alpha_i$
 - Represent spending rule by density f(i)

 $0 \le f(i+1) \le f(i), \Sigma f(i) = 1$

• Denote cumulative risk $R(\mu, f)$

Investing Rules

• Geometric

- Invest fixed proportion $\boldsymbol{\psi}$ of current wealth in next test

 $g(i) = \psi(1-\psi)^{i}, i=0,1,2,...$

- Uniform
 - Distribute wealth equally over tests
 h(i) = 1/n
- Universal
 - Version of Rissanen's universal prior for integers u(i) = c/[(i+1)log(i+2)] i=0,1,2,...
 - Invests much initially u(0) = 0.614
 but much less later u(30) =

Comparing Investing Rules

- Question rephrased
 - Arbitrary sequence $\mu_1, \mu_2, \dots, \mu_n$
 - Two monotone density functions g and h
 - What is the cumulative risk implied by using investing rule g vs investing rule h?
- Graph feasible set

Finding Feasible Set

- Compute from Bellman equations
 - Reduce to one-dimensional maximization $\max_{\mu} R(\mu, f) \gamma R(\mu, g)$ for various γ
 - messy, big recursion

References

- Need some to other than us???
- Streaming feature selection
 - Lin, Foster, and Ungar (2011), JASA
- Alpha-investing
 - Foster and Stine (2008), JRSS-B
- Honest p-values
 - Foster and Stine (2003), JASA

That's all for now... Thanks for coming!

