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Abstract

We argue that when objects are characterized by many attributes, clus-
tering them on the basis of a relatively smallrandomsubset of these
attributes can capture information on the unobserved attributes as well.
Moreover, we show that under mild technical conditions, clustering the
objects on the basis of such a random subset performs almost as well as
clustering with the full attribute set. We prove a finite sample general-
ization theorems for this novel learning scheme that extends analogous
results from the supervised learning setting. The scheme is demonstrated
for collaborative filtering of users with movies rating as attributes.

1 Introduction

Data clustering is unsupervised classification of objects into groups based on their similar-
ity [1]. Often, it is desirable to have the clusters to match some labels that are unknown
to the clustering algorithm. In this context, a good data clustering is expected to have ho-
mogeneous labels in each cluster, under some constraints on the number or complexity of
the clusters. This can be quantified by mutual information (see e.g. [2]) between the ob-
jects’ cluster identity and their (unknown) labels, for a given complexity of clusters. Since
the clustering algorithm has no access to the labels, it is unclear how the algorithm can
optimize the quality of the clustering. Even worse, the clustering quality depends on the
specific choice of the unobserved labels. For example a good documents clustering with
respect to topics is very different from a clustering with respect to authors.

In our setting, instead of trying to cluster by some “arbitrary” labels, we try to predict
unobserved features from observed ones. In this sense our target “labels” are yet other
features that “happened” to be unobserved. For example, when clustering fruits based on
their observed features, such as shape, color and size, the target of clustering is to match
unobserved features, such as nutritional value and toxicity.

In order to theoretically analyze and quantify this new learning scheme, we make the fol-
lowing assumptions. Consider an infinite set of features, and assume that we observe only
a randomsubset ofn features, calledobserved features. The other features are calledun-
observed features. We assume that the random selection of features is done uniformly and
independently.



Table 1: Analogy with supervised learning

Training set n randomly selected features (observed features)
Test set Unobserved features
Learning algorithm Cluster theinstancesinto k clusters
Hypothesis class All possible partitions ofm instances intok clusters
Min generalization error Max expected information onunobservedfeatures
ERM Maximize meanobservedinformation
Good generalization Meanobservedandunobservedinformation are similar

The clustering algorithm only has access to the observed features ofm instances. After the
clustering, one of theunobservedfeatures is randomly and uniformly selected to be a target
label, i.e. clustering performance is measured with respect to this feature. Obviously, the
clustering algorithm cannot be directly optimized for this specific feature.

The question is whether we can optimize theexpectedperformance on the unobserved
feature, based on the observed features alone. The expectation is over therandomselection
of the target feature. In other words, can we find clusters that match as many unobserved
features as possible? Perhaps surprisingly, for large enough number of observed features,
the answer is yes. We show that for any clustering algorithm, the average performance of
the clustering with respect to the observed and unobserved features, is similar. Hence we
can indirectly optimize clustering performance with respect to the unobserved features, in
analogy to generalization in supervised learning. These results are universal and do not
require any additional assumptions such as underling model or a distribution that created
the instances.

In order to quantify these results, we define two terms: the average observed informa-
tion and the expected unobserved information. LetT be the variable which represents the
cluster for each instance, and{X1, ..., X∞} the set of random variables which denotes the
features. The average observed information, denoted byIob, is the average mutual informa-
tion betweenT and each of the observed features. In other words, if the observed features
are{X1, ..., Xn} thenIob = 1

n

∑n
j=1 I(T ;Xj). The expected unobserved information,

denoted byIun, is theexpectedvalue of the mutual information betweenT and arandomly
selected unobserved feature, i.e.Ej{I(T ;Xj)}. Note that whereasIob can be measured
directly, this paper deals with the question of how to infer and maximizeIun.

Our main results consist of two theorems. The first is a generalization theorem. It gives
an upper bound on the probability of large difference betweenIob andIun for all possible
clusterings. It also states auniform convergence in probabilityof |Iob − Iun| as the num-
ber of observed features increases. Conceptually, the observed mean information,Iob, is
analogous to the training error in standard supervised learning [3], whereas the unobserved
information,Iun, is similar to the generalization error.

The second theorem states that under constraint on the number of clusters, and large enough
number of observed features, one can achieve nearly the best possible performance, in
terms ofIun. Analogous to the principle of Empirical Risk Minimization (ERM) in statis-
tical learning theory [3], this is done by maximizingIob.

Table 1 summarizes the correspondence of our setting to that of supervised learning. The
key difference is that in supervised learning, the set of features is fixed and the training
instances (samples) are assumed to be randomly drawn from some distribution. In our
setting, the set of instances is fixed, but the set of observed features is assumed to be
randomly selected.

Our new theorems are evaluated empirically in section 3, on a data set of movie ratings.



This empirical test also suggests one future research direction: use the framework sug-
gested in this paper for collaborative filtering. Our main point in this paper, however, is the
new conceptual framework and not a specific algorithm or experimental performance.

Related work The idea of an information tradeoff between complexity and information
on target variables is similar to the idea of the information bottleneck [4]. But unlike the
bottleneck method, here we are trying to maximize information onunobservedvariables,
using finite samples.

In the framework of learning with labeled and unlabeled data [5], a fundamental issue is the
link between the marginal distributionP (x) over examplesx and the conditionalP (y|x)
for the labely [6]. From this point of view our approach assumes thaty is a feature in itself.

2 Mathematical Formulation and Analysis

Consider a set of random variables{X1, ..., XL}, where L is very large (L → ∞). We
randomly, uniformly and independently selectn <<

√
L variables from this set. These

variables are the observed features and their indexes are denoted by{q1, ..., qn}. The re-
mainingL − n variables are theunobserved features. A clustering algorithm only has
access to theobservedfeatures overm instances{x[1], ...,x[m]}. The algorithm assigns a
cluster labelti ∈ {1, ..., k} for each instancex[i], wherek is the number of clusters. LetT
denote the cluster label assigned by the algorithm.

Shannon’s mutual information between two variables is a function of their joint distribu-

tion, defined asI(T ; Xj) =
∑

t,xj
P (t, xj) log

(
P (t,xj)

P (t)P (xj)

)
. Since we are dealing with a

finite number of samples,m, the distributionP is taken as theempirical joint distribution
of (T, Xj), for everyj. For a randomj, this empirical mutual information is a random
variable on its own.

The average observed information,Iob, is now defined asIob = 1
n

∑n
i=1 I(T ;Xqi). In

general,Iob is higher when clusters are more coherent, i.e. elements within each cluster
have many similar attributes. The expected unobserved information,Iun, is defined as
Iun = Ej {I(T ; Xj)}. We can assume that the unobserved feature is with high probability
from the unobserved set. Equivalently,Iun can be the mean mutual information between
the clusters and each of the unobserved features,Iun = 1

L−n

∑
j /∈{q1,...,qn} I(T ; Xj).

The goal of the clustering algorithm is to find cluster labels{t1, ..., tm}, that maximizes
Iun, subject to a constraint on their complexity - henceforth considered as the number of
clusters (k ≤ D) for simplicity, whereD is an integer bound.

Before discussing how to maximizeIun, we consider first the problem of estimating it.
Similar to the generalization error in supervised learning,Iun cannot be estimated directly
in the learning algorithm, but we may be able to bound the difference between the observed
informationIob - our “training error” - andIun - the “generalization error”. To obtain gen-
eralization this bound should beuniform over all possible clusteringswith a high proba-
bility over the randomly selected features. The following lemma argues that suchuniform
convergence in probabilityof Iob to Iun always occurs.

Lemma 1 With the definitions above,

Pr

{
sup

{t1,...,tm}
|Iob − Iun| > ε

}
≤ 2e−2nε2/(log k)2+m log k ∀ε > 0

where the probability is over the random selection of the observed features.



Proof: For fixed cluster labels,{t1, ..., tm}, and a random featurej, the mutual infor-
mationI(T ; Xj) is a function of the random variablej, and henceI(T ;Xj) is a random
variable in itself.Iob is the average ofn such independent random variables andIun is its
expected value. Clearly, for allj, 0 ≤ I(T ; Xj) ≤ log k. Using Hoeffding’s inequality [7],
Pr {|Iob − Iun| > ε} ≤ 2e−2nε2/(log k)2 . Since there are at mostkm possible partitions,
the union bound is sufficient to prove the lemma 1.

Note that for anyε > 0, the probability that|Iob − Iun| > ε goes to zero, asn → ∞. The
convergence rate ofIob to Iun is bounded byO(log n/

√
n). As expected, this upper bound

decreases as the number of clusters,k, decreases.

Unlike the standard bounds in supervised learning, this bound increases with the number
of instances (m), and decreases with increasing number of observed features (n). This
is because in our scheme the training size is not the number of instances, but rather the
number of observed features (See Table 1). However, in the next theorem we obtain an
upper bound that is independent ofm, and hence is tighter for largem.

Theorem 1 (Generalization Theorem)With the definitions above,

Pr

{
sup

{t1,...,tm}
|Iob − Iun| > ε

}
≤ 8(log k)e−

nε2

8(log k)2
+

4k maxj |Xj |
ε log k−log ε ∀ε > 0

where |Xj | denotes the alphabet size ofXj (i.e. the number of different values it can
obtain). Again, the probability is over the random selection of the observed features.

The convergence rate here is bounded byO(log n/3
√

n). However, for relatively largen
one can use the bound in lemma 1, which converge faster.

Before proving theorem 1, we introduce the following lemma, which is required for the
proof.

Lemma 2 Consider a functionf of two independent random variables(Y, Z). We assume
thatf(y, z) ≤ c, ∀y, z, wherec is some constant. IfPr {f(Y,Z) > ε̃} ≤ δ, then

Pr
Z
{Ey (f(y, Z)) ≥ ε} ≤ c− ε̃

ε− ε̃
δ ∀ε > ε̃

Proof of lemma 2: Let ZL be the set of values ofZ, such that for everyz′ ∈ ZL,
Ey(f(y, z′)) ≥ ε. For every suchz′ we get,

ε ≤ Ey (f(y, z′)) ≤ c Pr {f(Y, Z) > ε̃|Z = z′}+ ε̃ Pr {f(Y,Z) ≤ ε̃|Z = z′}
Hence,Pr {f(Y, Z) > ε̃|Z = z′} ≥ ε−ε̃

c−ε̃ . From the complete probability formula,

δ ≥ Pr {f(Y, Z) > ε̃} =
∑

z Pr {f(Y, Z) > ε̃|Z = z}P (z)
≥ ε−ε̃

c−ε̃

∑
z:z∈ZL

P (z)
= ε−ε̃

c−ε̃ PrZ {Ey (f(y, Z)) ≥ ε}

Lemma 2 follows directly from the last inequality.

We first provide an outline of the proof of theorem1 and then provide a detailed proof.

Theorem 1 - Proof outline: For a givenm instances and any given cluster labels
{t1, ..., tm}, draw uniformly and independentlym′ instances (repeats allowed) and denote
their indexes by{i1, ..., im′}. We can estimateI(T ; Xj) from the empirical distribution



of (T,Xj) over them′ instances. This distribution is denoted bŷP (t, xj) and the cor-
responding mutual information is denoted byIP̂ (T ; Xj). Theorem 1 is build up from
the following upper bounds, which are independent ofm, but depend on the choice of
m′. The first bound is onE

{∣∣I(T ; Xj)− IP̂ (T ; Xj)
∣∣}, where the expectation is over

random selection of them′ instances. From this bound we derive upper bounds on
|Iob − E(Îob)| and |Iun − E(Îun)|, whereÎob, Îun are the estimated values ofIob, Iun

based on the subset ofm′ instances. The last required bound is on the probability that
sup{t1,...,tm} |E(Îob) − E(Îun)| > ε1, for anyε1 > 0. This bound is obtained from lem-
mas 1 and 2. The choice ofm′ is independent onm. Its value should be large enough
for the estimationŝIob, Îun to be accurate, but not too large, so as to limit the number of
possible clusterings over them′ instances.

Note that we do not assume them instances are drawn from a distribution. Them′ instances
are drawn from the empirical distribution over them instances.

Theorem 1 - Detailed proof: The maximum likelihood estimation of entropy given dis-
crete empirical distribution(p̂1, ..., p̂N ), is defined asĤMLE = −∑N

i=1 p̂i log p̂i. Note
thatN is the alphabet size of our discrete distribution. From Paninski [8] (proposition 1)
the bias between the empirical and actual entropyH(p) is bounded as follows

− log
(

1 +
m′ − 1

N

)
≤ E

(
ĤMLE(p̂)

)
−H(p) ≤ 0

where the empirical estimation̂HMLE is based onm′ samples from the distributionp. The
expectation is over random sampling of thesem′ samples. SinceI(T ; Xj) = −H(T, Xj)+
H(T ) + H(Xj), we can upper bound the bias between actual and the empirical estimation
of mutual information as follows.

E{i1,...,im′}
{∣∣I(T ;Xj)− IP̂ (T ; Xj)

∣∣} ≤ log
(

1 +
k|Xj | − 1

m′

)
≤ k|Xj |

m′ (1)

From this equation we obtain,

|Iob − E{i1,...,im′}(Îob)|, |Iun − E{i1,...,im′}(Îun)| ≤ k max
j
|Xj |/m′ (2)

and hence,

|Iob−Iun| ≤
∣∣∣E(Îob)− E(Îun)

∣∣∣+2k max
j
|Xj |/m′ ≤ E

(∣∣∣Îob − Îun

∣∣∣
)
+2k max

j
|Xj |/m′

(3)

Using lemma 1 we have an upper bound on the probability thatsup{t1,...,tm} |Îob−Îun| > ε

over the random selection offeatures, as a function ofm′. However, the upper bound
we need is on the probability thatsup{t1,...,tm} |E(Îob) − E(Îun)| > ε1. Note that the

expectationsE(Îob), E(Îun) are done over random selection of the subset ofm′ instances,
for a set of features that were randomly selectedonce. In order to link between these two
probabilities, we use lemma 2.

From lemmas 1 and 2 it is easy to show that

Pr

{
E{i1,...,im′}

(
sup

{t1,...,tm}

∣∣∣Îob − Îun

∣∣∣
)

> ε1

}
≤ 4 log k

ε1
e
− nε21

2(log k)2
+m′ log k

(4)

Lemma 2 is used, whereZ represents the random selection of features,Y represents the
random selection ofm′ instances,f(y, z) = sup{t1,...,tm} |Îob − Îun|, c = log k, and



ε̃ = ε1/2. Since

E{i1,...,im′}

(
sup

{t1,...,tm}

∣∣∣Îob − Îun

∣∣∣
)
≥ sup
{t1,...,tm}

E{i1,...,im′}
(∣∣∣Îob − Îun

∣∣∣
)

and from eq. 3, 4 we obtain

Pr

{
sup

{t1,...,tm}
|Iob − Iun| > ε1 +

2k maxj |Xj |
m′

}
≤ 4 log k

ε1
e
− nε21

2(log k)2
+m′ log k

By selectingε1 = ε/2, m′ = 4k maxj |Xj |/ε, we obtain theorem 1.

Note that the selection ofm′ depends onk maxj |Xj |. This reflects the fact that in order
to accurately estimateI(T, Xj), we need a number of instances,m′, which is much larger
than the product of the alphabet sizes ofT , Xj .

We can now return to the problem of specifying a clustering that maximizesIun, using only
the observed features. For a reference, we will first defineIun of the best possible clusters.

Definition 1 Maximally achievable unobserved information:Let I∗un,D be the maximum
value ofIun that can be achieved by any clustering{t1, ..., tm}, subject to the constraint
k ≤ D, for some constantD

I∗un,D = sup
{{t1,...,tm}:k≤D}

Iun

The clustering that achieves this value is calledthe best clustering. The average observed
information of this clustering is denoted byI∗ob,D.

Definition 2 Observed information maximization algorithm:Let IobMax be any cluster-
ing algorithm that, based on the values of observed features alone, selects the cluster labels
{t1, ..., tm} having the maximum possible value ofIob, subject to the constraintk ≤ D.

Let Ĩob,D be the average observed information achieved by IobMax algorithm. LetĨun,D

be the expected unobserved information achieved by the IobMax algorithm.

The next theorem states thatIobMaxnot only maximizesIob, but alsoIun.

Theorem 2 With the definitions above,

Pr
{

Ĩun,D ≤ I∗un,D − ε
}
≤ 8(log k)e−

nε2

32(log k)2
+

8k maxj |Xj |
ε log k−log(ε/2) ∀ε > 0 (5)

where the probability is over the random selection of the observed features.

Proof: We now define abad clusteringas a clustering whose expected unobserved infor-
mation satisfiesIun ≤ I∗un,D − ε. Using Theorem 1, the probability that|Iob − Iun| > ε/2
for any of the clusterings is upper bounded by the right term of equation 5. If for all clus-
terings|Iob − Iun| ≤ ε/2, then surelyI∗ob,D ≥ I∗un,D − ε/2 (see Definition 1) andIob of
all bad clusterings satisfiesIob ≤ I∗un,D − ε/2. Hence the probability that a bad clustering
has a higher average observed information than the best clustering is upper bounded as in
Theorem 2.

As a result of this theorem, whenn is large enough, even an algorithm that knows the value
of all the features (observed and unobserved) cannot find a clustering with the same com-
plexity (k) which is significantly better than the clustering found byIobMax algorithm.



3 Empirical Evaluation

In this section we describe an experimental evaluation of the generalization properties of
the IobMax algorithm for a finite large number of features. We examine the difference
betweenIob andIun as function of the number of observed features and the number of
clusters used. We also compare the value ofIun achieved byIobMax algorithm to the
maximum achievableI∗un,D (See definition 1).

Our evaluation uses a data set typically used for collaborative filtering. Collaborative fil-
tering refers to methods of making predictions about a user’s preferences, by collecting
preferences of many users. For example, collaborative filtering for movie ratings could
make predictions about rating of movies by a user, given a partial list of ratings from this
user and many other users. Clustering methods are used for collaborative filtering by cluster
users based on the similarity of their ratings (see e.g. [9]).

In our setting, each user is described as a vector of movie ratings. The rating of each movie
is regarded as a feature. We cluster users based on the set of observed features, i.e. rated
movies. In our context, the goal of the clustering is to maximize the information between
the clusters and unobserved features, i.e. movies that have not yet been rated by any of the
users. By Theorem 2, given large enough number of rated movies, we can achieve the best
possible clustering of users with respect to unseen movies. In this region, no additional
information (such as user age, taste, rating of more movies) beyond the observed features
can improveIun by more than some smallε.

The purpose of this section isnot to suggest a new algorithm for collaborative filtering or
compare it to other methods, but simply to illustrate our new theorems on empirical data.

Dataset. We used MovieLens (www.movielens.umn.edu), which is a movie rating data
set. It was collected distributed by GroupLens Research at the University of Minnesota. It
contains approximately 1 million ratings for 3900 movies by 6040 users. Ratings are on
a scale of 1 to 5. We used only a subset consisting of 2400 movies by 4000 users. In our
setting, each instance is a vector of ratings(x1, ..., x2400) by specific user. Each movie is
viewed as a feature, where the rating is the value of the feature.

Experimental Setup. We randomly split the 2400 movies into two groups, denoted by
“A” and “B”, of 1200 movies (features) each. We used a subset of the movies from group
“A” as observed features and all movies from group “B” as the unobserved features. The
experiment was repeated with 10 random splits and the results averaged. We estimatedIun

by the mean information between the clusters and ratings of movies from group “B”.

Handling Missing Values. In this data set, most of the values are missing (not rated). We
handle this by defining the feature variable as 1,2,...,5 for the ratings and 0 for missing
value. We maximize the mutual information based on the empirical distribution of values
that are present, and weight it by the probability of presence for this feature. Hence,Iob =∑n

j=1 P (Xj 6= 0)I(T ; Xj |Xj 6= 0) andIun = Ej {P (Xj 6= 0)I(T ; Xj |Xj 6= 0)}. The
weighting prevents ’overfitting’ to movies with few ratings. Since the observed features
were selected at random, the statistics of missing values of the observed and unobserved
features are the same. Hence, all theorems are applicable to these definitions ofIob andIun

as well.

Greedy IobMax Algorithm

We cluster the users using a simple greedy clustering algorithm (see algorithm 1). The
input to the algorithm is all users, represented solely by the observed features. Since this
algorithm can only find a local maximum ofIob, we ran the algorithm 10 times (each used
a different random initialization) and selected the results that had a maximum value ofIob.



0 200 400 600 800 1000 1200
0

0.005

0.01

0.015

0.02

0.025

Number of observed features (movies) (n)

Iob

I
un

I*un

(a) 2 Clusters

0 200 400 600 800 1000 1200
0

0.005

0.01

0.015

0.02

0.025

Number of observed features (movies) (n)

Iob

I
un

I*un

(b) 6 Clusters

2 3 4 5 6
0

0.005

0.01

0.015

Number of clusters (k)

Iob

I
un

(c) Fixed n (1200)

Figure 1:Iob, Iun andI∗un per number of training movies and clusters. In (a) and (b) the
number of movies is variable, and the number of clusters is fixed. In (c) The number of
observed movies is fixed (1200), and the number of clusters is variable. The overall mean
information is low, since the rating matrix is sparse.

Algorithm 1 A simple greedyIobMaxalgorithm
1. Assign a random cluster to each of the users.

2. Forr = 1 : R (whereR is the upper limit on the number of iterations)

(a) For each user,
i. CalculateIob for all possible clusterings,t, of the current user.

ii. Choose the clustering that maximizesIob.
(b) Exit if the clusters of all documents do not change.

In order to estimateI∗un,D (see definition 1), we also ran the same algorithm, where all the
features are available to the algorithm (i.e. also features from group “B”). The algorithm
finds clusters that maximize the mean mutual information on features from group "B".

Results

The results are shown in Figure 1. Asn increases,Iob decreases andIun increases, until
they converge to each other. For smalln, the clustering ’overfits’ to the observed features.
This is similar to training and test errors in supervised learning. For largen, Iun approaches
to I∗un,D, which means theIobMax algorithm found nearly the best possible clustering -
as expected from the theorem 2. As the number of clusters increases, bothIob andIun

increase, but the difference between them also increases.

4 Discussion and Summary

We introduce a new learning paradigm: clustering based on observed features that gen-
eralizes to unobserved features. Our results are summarized by two theorems that tell us
how, without knowing the value of the unobserved features, one can estimate and maximize
information between the clusters and the unobserved features.

The importance of clustering which preserves information on unobserved features is that
it enables us to learn new - previously unobserved - attributes from a small number of
examples. Suppose that after clustering fruits based on their observed features, we eat a
chinaberry1 and thus, we ”observe” (by getting sick), the previously unobserved attribute of

1Chinaberries are the fruits of the Melia azedarach tree, and are poisonous.



toxicity. Assuming that in each cluster, all fruits have similar unobserved attributes, we can
conclude that all fruits in the same cluster, i.e. all chinaberries, are likely to be poisonous.

We can even relate theIobMax principle to cognitive clustering in sensory information
processing. In general, a symbolic representation (e.g. assigning object names in language)
may be based on a similar principle - find a representation (clusters) that contain significant
information on as many observed features as possible, while still remaining simple. Such
representations are expected to contain information on other rarely viewed salient features.
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