
Statistics and The War on Spam

David Madigan

Rutgers University

Abstract

Text categorization algorithms assign texts to predefined categories. The
study of such algorithms has a rich history dating back at least forty years. In
the last decade or so, the statistical approach has dominated the literature. The
essential idea is to infer a text categorization algorithm from a set of labeled
documents, i.e., documents with known category assignments. The algorithm,
once learned, automatically assigns labels to new documents. Motivated by
a successful application to “spam” or “unsolicited bulk e-mail” filtering, this
chapter will present the “Naive Bayes” approach to statistical text categoriza-
tion.

1 Introduction

“Are you an Inventor? Have a Great Idea? We can help”

“Now available - cash maker”

“Find out if your mortgage rate is too high, NOW. Free Search”

“Instantaneously Attract Women”

“Confirming your FREE PDA”

These are the subject lines from unsolicited e-mail messages I received in a one

hour period. Once a mild annoyance, unsolicited bulk e-mail–also known as spam–

comprises close to half of all message traffic on the Internet. Spam is a big problem

for several reasons: Spam imposes a significant burden on Internet Service Providers;

the resulting costs ultimately trickle down to individual subscribers. Spam supports

pyramid schemes, dubious health products and remedies, and other fraudulent ac-

tivities. Spam exposes minors to innappropriate material. Spam results in a loss of

1



productivity; the cumulative costs add up quickly when all e-mail users spend a few

minutes a day dealing with and disposing of spam.

Defenders of spam draw comparisons with print catalogs. Catalog companies use

regular mail to send catalogs to potential new customers. Why is it OK to send

unsolicited catalogs, and not OK to send unsolicited e-mails? One key difference is

cost - spammers can send millions of messages for little or no cost. Paul Graham, an

anti-spam activist, proposed the following thought experiment1:

“Suppose instead of getting a couple print catalogs a day, you got a

hundred. Suppose that they were handed to you in person by couriers

who arrived at random times all through the day. And finally suppose

they were all just ugly photocopied sheets advertising pornography, diet

drugs, and mortgages.”

Given the central role of e-mail in our professional lives, the analogy with spam is

not so farfetched.

The problem of spam is attracting increasing media attention and a sort of War on

Spam has begun. In what follows I describe the critical role Statistics plays in this

War.

2 Spam Filters

Systemic progress against spam may require complex worldwide legislation. Individ-

ual users, however, can protect themselves with so-called “spam filters.” A spam

filter is a computer program that scans incoming e-mail and sends likely spam to a

special spam folder. Spam filters can make two kinds of mistakes. A filter might fail

to detect that a particular message is spam and incorrectly let it through to the inbox

(a false negative). Equally a filter might incorrectly route a perfectly good message

to the spam folder (a false positive). An effective spam filter will have a low false

negative rate, and perhaps more criticially, a low false positive rate.

1http://www.paulgraham.com

2



Early spam filters used hand-crafted rules to identify spam. Here are the antecedents

for some typical spam rules:

• <Subject> contains “FREE” in CAPS

• <Body> contains “University Diploma”

• <Body> contain an entire line in CAPS

• <From:> starts with numbers

This approach can produce effective spam filters. In fact, merely looking for the word

“FREE” for instance, catches about 60% of the e-mails in my collection of spam, with

less than 1% false positives. However, the hand-crafting approach suffers from two

significant drawbacks. First, creating rules is a tedious, expensive, and error-prone

process. Second, humans are unlikely to spot more obscure indicators of spam such

as the presence of particular HTML tags or the use of certain font colors.

In the last couple of years, the statistical approach to constructing spam filters has

emerged as a method-of-choice and provides the core technology for several leading

commercial spam filters. The statistical approach starts with a collection of e-mail

messages that have been hand-labeled as spam or not-spam; creating these “training

data” is the hard part. Next, a statistical algorithm scans the collection and identifies

discriminating features along with associated weights. Finally, the trained algorithm

scans new e-mail messages as they arrive and automatically labels each one as spam

or not-spam.

Spam filter builders use many different statistical algorithms including decision trees,

nearest-neighbor methods, and support vector machines. In what follows, we describe

“Naive Bayes,” a straightforward and popular approach, that has achieved excellent

results on some standard test collections.

3 Representing E-mail for Statistical Algorithms

All statistical algorithms for spam filtering begin with a vector representation of

individual e-mail messages. Researchers have studied many different representations

3



but most applications use the so-called “bag-of-words” representation. Bag-of-words

represents each e-mail message by a “term vector.” The length of the term vector

is the number of distinct words in all the e-mail messages in the training data. The

entry for a particular word in the term vector for a particular e-mail message is usually

the number of occurences of the word in the e-mail message. For example, Table 1

presents toy training data comprising four e-mail messages. These data contain ten

distinct words: the, quick, brown, fox, rabbit, ran, and, run, at, and rest. Table 2

shows the corresponding set of term vectors.

# Message Spam

1 the quick brown fox no

2 the quick rabbit ran and ran yes

3 rabbit run run run no

4 rabbit at rest yes

Table 1: Training data comprising four labeled e-mail messages.

# and at brown fox quick rabbit ran rest run the

1 0 0 1 1 1 0 0 0 0 1

2 1 0 0 0 1 1 2 0 0 1

3 0 0 0 0 0 1 0 0 3 0

4 0 1 0 0 0 1 0 1 0 0

Table 2: Term vectors corresponding to the training data.

If the training data comprise thousands of e-mail messages, the number of distinct

words often exceeds 10,000. Two simple strategies to reduce the size of the term

vector somewhat are to remove “stop words” (words like and, of, the, etc.) and to

reduce words to their root form, a process known as stemming (so, for example, “ran”

and “run” reduce to “run”). Table 3 shows the reduced term vectors along with the

spam label.

The bag-of-words representation has some limitations. In particular, this representa-

tion contains no information about the order in which the words appear in the e-mail

messages!

4



X1 X2 X3 X4 X5 X6 Y

# brown fox quick rabbit rest run Spam

1 1 1 1 0 0 0 0

2 0 0 1 1 0 2 1

3 0 0 0 1 0 3 0

4 0 0 0 1 1 0 1

Table 3: Term vectors after stemming and stopword removal with the Spam label,

coded as 0=no, 1=yes.

4 Naive Bayes for Spam

Let X = (X1, . . . , Xd) denote the term vector for a random e-mail message, where d

is the number of distinct words in the training data, after stemming and stopword

removal. Let Y denote the corresponding spam label. The Naive Bayes model seeks

to build a model for:

Pr(Y = 1|X1 = x1, . . . , Xd = xd).

From Bayes theorem, we have:

Pr(Y = 1|X1 = x1, . . . , Xd = xd) =
Pr(Y = 1) × Pr(X1 = x1, . . . , Xd = xd|Y = 1)

Pr(X1 = x1, . . . , Xd = xd)
,

(1)

or, on the log odds scale,

log
Pr(Y = 1|X1 = x1, . . . , Xd = xd)

Pr(Y = 0|X1 = x1, . . . , Xd = xd)
= log

Pr(Y = 1)

Pr(Y = 0)
+log

Pr(X1 = x1, . . . , Xd = xd|Y = 1)

Pr(X1 = x1, . . . , Xd = xd|Y = 0)
.

(2)

The log odds scale avoids the normalizing constant in the denominator of the right

hand side of (1).

The first term on the right hand side of (2) involves the prior probability that a

random message is spam. The second term on the right hand side of (2) involves two

conditional probabilities, namely the conditional probability of a term vector given

that the term vector’s message is spam, and the conditional probability of a term

vector given that the term vector’s message is not spam. This is problematic insofar

as it involves the joint probability distribution of d random variables, X1, . . . , Xd,

5



where d is potentially large. The key assumption of the Naive Bayes model is that

these random variables are conditionally independent given Y . That is:

Pr(X1 = x1, . . . , Xd = xd|Y = 1) =
d∏

i=1

Pr(Xi = xi|Y = 1)

and

Pr(X1 = x1, . . . , Xd = xd|Y = 0) =
d∏

i=1

Pr(Xi = xi|Y = 0)

leading to:

log
Pr(Y = 1|X1 = x1, . . . , Xd = xd)

Pr(Y = 0|X1 = x1, . . . , Xd = xd)
= log

Pr(Y = 1)

Pr(Y = 0)
+

d∑

i=1

log
Pr(Xi = xi|Y = 1)

Pr(Xi = xi|Y = 0)
.

(3)

This independence assumption is unlikely to reflect reality. For instance, in my collec-

tion of of spam messages, the word “mortgage” is strongly associated with the word

“interest,” a violation of the conditional independence assumption.

Nonetheless, the independence assumption provides a drastic reduction in the number

of distinct probabilities that we need to estimate from the training data and yet often

performs well in practice.

4.1 Binary Naive Bayes

For now, let us simplify the representation to binary term vectors. That is, let Xi = 1

if word i is present one or more times in a message and Xi = 0 otherwise, i = 1, . . . , d.

Without the Naive Bayes assumption, the model needs estimates for 2×2d parameters

for the term vectors (one probability for every possible term vector for both spam

and not-spam). With the Naive Bayes assumption, the model needs 2 × d estimates.

The extreme nature of the core independence assumption earns the model its “Naive”

name. Some earlier literature refers to the model as “Idiot’s Bayes.”

There remains the issue of how to estimate the model’s probabilities from the training

data. Specifically, sticking with the binary representation, the model needs estimates

for log Pr(Y =1)
Pr(Y =0)

and for log Pr(Xi=1|Y =1)
Pr(Xi=1|Y =0)

, i = 1, . . . , d (the literature refers to these latter

terms as “weights of evidence”). The obvious approach is to estimate each probability

6



by its observed fraction in the training data and plug these estimated probabilities

into the expressions for the log odds. For the example in Table 3 this leads to, for

instance,

log
P̂ r(Y = 1)

P̂ r(Y = 0)
= log

2/4

2/4
= 0

and

log
P̂ r(X3 = 1|Y = 1)

P̂ r(X3 = 1|Y = 0)
= log

2/2

1/2
= log 2

where P̂ r denotes an estimated probability. These correspond to the maximum like-

lihood estimates of the probabilities.

This approach does not provide unbiased estimates for the weights of evidence, and

also runs into practical difficulties when it estimates some probabilities as zero. For

example, in the example, P̂ r(X5 = 1|Y = 0) = 0, leading to an undefined estimate

for the corresponding weight of evidence. The standard solution to this problem is to

“smooth” the estimates by adding a small positive constant to each numerator and

denominator of each probability estimate. The Appendix describes one particular

rationale for choosing the value of the small positive constant, focusing on reducing

bias (and suggests setting the constant to 0.5).

Table 4 shows the resulting estimated weights of evidence for the example.

X1 X2 X3 X4 X5 X6

brown fox quick rabbit rest run

Term Present -1.10 -1.10 0 0.51 1.10 0

Term Absent 0.51 0.51 0 -1.10 -0.51 0

Table 4: Estimated Weights of evidence for the example.

Now suppose a new e-mail message arrives:

The quick rabbit rests

Does the Naive Bayes model predict that this message is spam? After stemming and

stopword removal, Table 5 shows the term vector for this message along with the

associated weights of evidence.

7



X1 X2 X3 X4 X5 X6

brown fox quick rabbit rest run

Term Vector 0 0 1 1 1 0

Weight of Evidence 0.51 0.51 0 0.51 1.10 0

Table 5: Making predictions for a new e-mail message.

According to the model, the log-odds that this message is spam is the prior log odds

(zero in this case) plus the sum of the relevant weights of evidence: 0.51 + 0.51 + 0 +

0.51+1.10+0 = 2.63. This corresponds to a predicted probability of 0.93. The spam

filter builder chooses a threshold and then compares this predicted probability to the

threshold. If the probability exceeds the threshold, the filter routes the message to the

spam folder. Otherwise the filter lets the message through to the inbox. The choice

of the threshold must reflect the builder’s relative concerns about the two kinds of

errors mentioned earlier. A low threshold may result in a higher false positive rate -

more legitimate messages ending up in the spam folder. A high threshold may result

in a higher false negative rate - more spam messages ending up in the inbox. Most

commercial spam filters allow the user to select the threshold.

4.2 Multinomial Naive Bayes

The binary representation ignores the number of occurences of each term in a mes-

sage, yet these term frequencies may provide useful useful clues for identifying spam.

Incorporation of term frequencies requires a model for Pr(Xi = xi), i = 1, . . . , d, xi ∈
{0, 1, 2, . . .}. One can apply standard models for non-negative integers such as Poisson

and Negative Binomial in this context but the literature reports mixed success (see,

for example, Eyheramendy et al., 2003, and the classic text by Mosteller and Wallace,

1984). A number of researchers have reported success with the so-called multinomial

Naive Bayes model. This model assumes that message length is independent of spam

status. We refer the interested reader to Eyheramendy et al. (2003), Lewis (1998),

and McCallum and Nigam (1998) for details.

8



4.3 Naive Bayes Effectiveness

The Naive Bayes model is simple to implement and scales well to large-scale training

data. The literature on spam filtering reports a number of experiments where Naive

Bayes delivers competitive false positive and false negative rates.

Sahami et al. (1998) conducted experiments with a corpus of 1,789 e-mail messages,

almost 90% of which were spam. They randomly split this corpus into 1,538 training

messages and 251 testing message. A Naive Bayes classifier, as described above,

achieved a false negative rate of 12% and a false positive rate of 3%. Extending the

term vector representation to include hand-crafted phrases and some domain-specific

features reduced the false negative rate to 4% and the false positive rate to 0%.

Androutsopoulos et al. (2000) report experiments using the “Ling-spam” corpus of

2,893 e-mail messages, 481 of which are spam. They reported a false positive rate of

1% computed via 10-fold cross-validation. Their Naive Bayes algorithm outperformed

a set of rules built into a widely used commerical e-mail client.

Carreras and Marquez (2001) on yet another corpus (PU1) report a Naive Bayes false

positive rate of 5%. Neither Androutsopoulos et al. nor Carreras and Marquez report

false negative rates.

Newer statistical algorithms such as regularized logistic regression, support vector

machines, and boosted decision trees can achieve higher effectiveness. Carreras and

Marquez (2001), for example, reported experiments in which boosted decision trees

out-performed Naive Bayes by a few percentage points on the Ling-spam corpus.

5 Discussion: Beyond Spam Filtering

Spam filtering has provided the primary focus for this chapter and we have highlighted

the central role of Statistics. In fact spam filtering is one particular example of the

broader topic of “text categorization.” Text categorization algorithms assign texts to

predefined categories. The study of such algorithms has a rich history dating back

at least forty years. In the last decade or so, the statistical approach has dominated

the literature. The essential idea, as with statistical spam filtering, is to infer a text

9



categorization algorithm from a set of labeled documents, i.e., documents with known

category assignments, where a feature vector represents the documents. Sebastiani

(2002) provides an overview.

Applications of statistical text categorization include:

• Building web directories like the dmoz open directory and Yahoo!

• Routing incoming customer service e-mail

• Identifying “interesting” new stories for intelligence analysts

• Classifying financial news stories as “significant” or “insignificant”

While Naive Bayes is rarely the top-performing algorithm in any of these applications,

it invariably provides reasonable effectiveness with minimal computational effort.

6 Appendix: Smoothing Estimated Weights of Ev-

idence to Reduce Bias

We consider a binomial sampling model for a single term. Let N1 denote the number of

spam e-mail messages in the training data and N2 the number of not-spam messages.

Let R1 denote the number of spam messages containing the term and R2 the number of

not-spam messages containing the term (see Table 6). The binomial sampling model

assumes that Ni is fixed, and that Ri is binomially distributed with parameters Ni

and θi, i = 1, 2. Let W (S : T ) = log θ1

θ2
denote the target weight of evidence and

Ŵ (S : T ) the corresponding estimated weight of evidence. As in Spiegelhalter and

Knill-Jones (1984), we want to choose a, b, c, d ∈ <+ such that:

E(Ŵ (S : T )) = E(log
R1 + a

N1 + b
/
R2 + c

N2 + d
)

is as close as possible to W (S : T ). That is, we want to minimize the bias of Ŵ (S : T ).

Following Cox (1970, p.33) let:

Ri = Niθi + Ui

√
N i, i = 1, 2,

10



Spam Not Spam

Term Present R1 R2

Term Absent N1 − R1 N2 − R2

Table 6: Frequency counts required for estimating a single weight of evidence.

and thus:

E(Ui) = 0

E(U2
i ) = θi(1 − θi)

E(U3
i ) = N

−1/2
i θi(1 − θi)(1 − 2θi)

E(U4
i ) = 3θ2

i (1 − θi)
2 + N−1

i θi(1 − θi)(1 − 6θi(1 − θi)).

We consider:

Ŵ (S : T ) − W (S : T )

= log
R1 + a

N1 + b
− log

R2 + c

N2 + d
− log

θ1

θ2

= log
N1θ1 + U1

√
N 1 + a

N1 + b
− log

N2θ2 + U2

√
N 2 + c

N2 + d
− log

θ1

θ2
.

= log

(
1 +

U1

θ1

√
N1

+
a

N1θ1
+

d

N2
+

dU1

θ1N2

√
N1

+
ad

θ1N1N2

)

− log

(
1 +

U2

θ2

√
N2

+
c

N2θ2
+

b

N1
+

bU2

θ2N1

√
N2

+
bc

θ2N1N2

)

Expanding this expression, taking expectations, and ignoring terms of order N−2 and

lower, where N = min(N1, N2) we have:

E
(
Ŵ (S : T ) − W (S : T )

)

=
a − 1/2

θ1N1
− c − 1/2

θ2N2
− b − 1/2

N1
+

d − 1/2

N2
+ O(N−2).

The absolute value of this expression is clearly minimized when a = b = c = d = 1/2.

With these values, the bias is given by:

− 1 − θ2
1

24θ2
1N

2
1

+
1 − θ2

2

24θ2
2N

2
2

+ O(N−3).

11



It is straightforward but tedious to show that setting a = b = c = d = 1/2 also

minimizes the bias for the Poisson and multinomial sampling schemes. Curiously,

for a binomial sampling that conditions on the row totals of Table 6 instead of the

column totals, simple expressions for a, b, c, and d do not seem to exist.

References

Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. Spyropoulos, and P.

Stamatopoulos (2000). Learning to filter spam e-mail: A comparison of a naive

bayesian and a memory-based approach. In: Workshop on Machine Learning and

Textual Information Access, 4th European Conference on Principles and Practice of

Knowledge Discovery in Databases.

Carreras, X. and Marquez, L. (2001). Boosting trees for anti-spam email filtering. In:

Proceedings of RANLP-01, Jth International Conference on Recent Advances in Nat-

ural Language Processing. http://citeseer.nj.nec.com/article/carreras01boosting.html

Cox, D.R. (1970). The Analysis of Binary Data. Chapman and Hall, London.

Eyheramendy, S., Lewis, D.D., and Madigan, D. (2003). On the naive bayes model for

text classification. In: Proceedings of The Ninth International Workshop on Artificial

Intelligence and Statistics, C.M. Bishop and B.J. Frey (Editors), 332-339.

Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in informa-

tion retrieval. In: ECML’98, The Tenth European Conference on Machine Learning,

4–15.

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive Bayes

text classification. In: Proceedings of the AAAI-98 Workshop on Learning for Text

Categorization. AAAI Press.

Mosteller, F. and Wallace, D.L. (1984). Applied Bayesian and Classical Inference

(Second Edition). Springer-Verlag, New York.

Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. (1998). A Bayesian Ap-

proach to Filtering Junk E-Mail. In: Learning for Text Categorization: Papers from

12



the 1998 Workshop. AAAI Technical Report WS-98-05.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM

Computing Surveys, 34, 1–47.

Spiegelhalter, D.J. and Knill-Jones, R.P. (1984). Statistical and knowledge based ap-

proaches to clinical decision support systems, with an application to gastroenterology

(with discussion). Journal of the Royal Statistical Society (Series A), 147, 35-77.

13


