Nerlov <- read.table("C:/public/nerlov.txt",header=T)
## Or you can perform the above step via the gui.
## To make sure that SPLus can see the data you attach it
attach(Nerlov)
## Now you can fit the regression through the gui or use the following
## command line syntax.
## The command to do regression is lm (for linear model).
## the " <- " says to assign the output from the lm command
## to an object called nerlov.lm
nerlov.lm <- lm(LNCP3~LNP13+LNP23+LNKWH)
## To get a summary the command is summary
summary(nerlov.lm)
## You can get just the coefficients (useful for bootstrapping by ) coef
coef(nerlov.lm)
## To get a specific coefficient, like the fourth, type in
coef(nerlov.lm)[4]
## Recall from (3.21) in Berndt, that you get r from 1/beta_y, so
## the estimate of r comes from 1/coef(lm(LNCP3~LNP13+LNP23+LNKWH))[4]
## so we get it from typing in
1/coef(lm(LNCP3~LNP13+LNP23+LNKWH))[4]
## Now let's bootstrap this estimate, to get a standard error
## and a bootstrap confidence interval.
## we'll save the bootstrap object in nerlov.boot
nerlov.boot <- bootstrap(Nerlov,1/coef(lm(LNCP3~LNP13+LNP23+LNKWH))[4],B=1000)
## Now we can plot the object or summarize it.
summary(nerlov.boot)
## This sets up a graphics device, ie a screen to graph on.
win.graph()
plot(nerlov.boot)
## It's possible to bootstrap just about anything, for example
## R-squared for the ibm market returns dataset.
## First read in the dataset
markibm <- read.table("C:/public/ibm.txt",header=T)
## Now attach it.
attach(markibm)
## Run the regression
ibm.lm <- lm(IBM ~ Market)
## Summarize it
summary(ibm.lm)
## Check out what is in the summary
names(summary(ibm.lm))
## Rip off r-squared
summary(ibm.lm)$r.squared
## Now we know how to bootstrap r-squared
ibm.boot <- bootstrap(markibm, summary(lm(IBM ~ Market))$r.squared,B=1000)