Evaluates Hessian for a Neural Network

Usage

nnet.Hess(net, x, y)

Arguments

net object of class nnet as returned by nnet.
x training data.
y classes for training data.
weights the (case) weights used in the nnet fit.

Description

Evaluates the Hessian (matrix of second derivatives) of the specified neural network. Normally called via argument Hess=TRUE to nnet or via vcov.multinom.

Value

square symmetric matrix of the Hessian evaluated at the weights stored in the net.

See Also

nnet, predict.nnet

Examples

data(iris3)
# use half the iris data
ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
targets <- matrix(c(rep(c(1,0,0),50), rep(c(0,1,0),50), rep(c(0,0,1),50)),
150, 3, byrow=TRUE)
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,],size=2, rang=0.1, decay=5e-4, maxit=200)
eigen(nnet.Hess(ir1, ir[samp,], targets[samp,]), T)$values


[Package Contents]