Evaluates Hessian for a Neural Network
Usage
nnet.Hess(net, x, y)
Arguments
net
|
object of class nnet as returned by nnet .
|
x
|
training data.
|
y
|
classes for training data.
|
weights
|
the (case) weights used in the nnet fit.
|
Description
Evaluates the Hessian (matrix of second derivatives) of the specified
neural network. Normally called via argument Hess=TRUE
to nnet
or via
vcov.multinom
.Value
square symmetric matrix of the Hessian evaluated at the weights stored
in the net.See Also
nnet
, predict.nnet
Examples
data(iris3)
# use half the iris data
ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
targets <- matrix(c(rep(c(1,0,0),50), rep(c(0,1,0),50), rep(c(0,0,1),50)),
150, 3, byrow=TRUE)
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,],size=2, rang=0.1, decay=5e-4, maxit=200)
eigen(nnet.Hess(ir1, ir[samp,], targets[samp,]), T)$values