### A theorist takes a look at LLMs

Dean Foster, Amazon

November 5, 2024



### What I won't tell you about today

### • What I've been doing for the past 2 years:

- Engineering: building LLMs
- Alignment: defending LLMs ([1])
- Optimization: picking the batch size ([2])
- Applications: tutoring children ([3], [4])
- Theory: ?

Today, I'll tell you mostly about my theory work

# What can theory or even science tell us about LLMs?

Theory? What is it good for?

# What can theory or even science tell us about LLMs?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James Brown):

What can theory or even science tell us about LLMs?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James Brown):

# **Absolutely Nothing!**

### Examples of cool theory:

- Chain of though can learn a Turing machine (Malach 2023)
- What LLMs can learn ("leap complexity" 2023)
- saddle point escape
- Many papers on two layer network theory as tensors
- Many theory paper on the first step of SGD / Adam
- ΦP (asymptotics: <u>"Tensors" 2020-23</u>)
- Matyroshka (principal of marginality: <u>Kakade 2023</u>)

### Examples of cool theory:

- Chain of though can learn a Turing machine (Malach 2023)
- what LLMs can learn (<u>"leap complexity</u>" 2023)
- saddle point escape
- Many papers on two layer network theory as tensors
- Many theory paper on the first step of SGD / Adam
- ΦP (asymptotics: <u>"Tensors" 2020-23</u>)
- Matyroshka (principal of marginality: <u>Kakade 2023</u>)

But only 6 and 7 offer practical advice.

I'll present 3 short ideas with implications for real NNs. The theory will be stolen from:

- Computation complexity
- 2 cryptography
- statistics

# Idea #1:

# Computational complexity

#### Theorem (Daniel Hsu 2023)

An transformer LLM can answer the "two sum" problem, but to answer a "three sum" requires it to be extremely wide. (arxiv)

#### Theorem (Merrill and Sabharwal 2023)

An LLM can only answer questions in TC(0) if asked directly for the answer. (<u>arxiv</u>)

Theorem (Malach 2023)

A linear LLM can be trained to mimic a Turing machine using chain-of-thought.

Theorem (Giannou, Rajput, Sohn, Lee, Lee, and Papailiopoulos 2023)

Looped Transformers are general computers.

ls  $\sqrt{2\pi} \stackrel{?}{>} e$ ?

Is  $\sqrt{2\pi} \stackrel{?}{>} e$ ?

Asking directly forces the LLM to guess.

Is  $\sqrt{2\pi} \stackrel{?}{>} e$ ?

- Asking, "Think step-by-step and work out..."
- Higher accuracy

Is  $\sqrt{2\pi} \stackrel{?}{>} e$ ?

- Asking, "Take a deep breath and work out..." (Sept 2023)
- Even higher accuracy

### Contrasting native LLMs vs Chain of Thought

### Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

### Contrasting native LLMs vs Chain of Thought

### Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

### Theorem (F. and Madeka 2023)

Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

### Contrasting native LLMs vs Chain of Thought

### Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

### Theorem (F. and Madeka 2023)

Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

A long roll out is where the new power comes from.



# Implication #1:

## Use tiers of NN

# Hardware:

# Compute: 1000s of GPUs instances

Communication: TBytes/s





### **Tiered model**

- Bottom tier:
  - training: usual transformer model
  - Generates "roll outs"



### **Tiered model**

- Bottom tier:
  - training: usual transformer model
  - Generates "roll outs"
- Middle tiers:
  - training: Using history and roll-out, predict next word
  - generates new roll outs



### **Tiered model**

- Bottom tier:
  - training: usual transformer model
  - Generates "roll outs"
- Middle tiers:
  - training: Using history and roll-out, predict next word
  - generates new roll outs
- Top tier:
  - Training: Reads all roll outs and history then predictions the next word
  - inference: Generate all roll outs and then generate next word



## Alternative implementation

To reify our theorem, you need to build an interpreter into the LLM.

## Alternative implementation

To reify our theorem, you need to build an interpreter into the LLM.

- This means training it on doing step-by-step thinking
- If you are going to externalize some thinking, it should be trained on that also
- For example, using *Lean* as a proof assistant:

```
...text {Lean code} {Lean output} text...
```

• This should be part of the training data

# Idea #2:

# One way functions

A one way function is one where f(x) is easy to compute, but  $f^{-1}(y)$  is hard to compute. Examples:

- Cryptography
- pseudo random number generators
- block chain

We process words L2R in a transformer based LLM.

- Not as obvious as in an auto-regressive LLM (e.g. LSTM)
- Still, all values are "time stamped"
  - Every node in a transformer has a time stamp
  - It only depends on tokens that came before that time stamp
  - represented by the causal triangle matrix

There is a function of T tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree  $2^{T}$ .

There is a function of T tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree  $2^{T}$ .

How to beat the counter-example:

- copy all data to the last token T
- Now mimic the L2R

There is a function of T tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree  $2^{T}$ .

#### Theorem

Any function of T tokens which can be simply computed L2R in L layers and embedding dimension d can be simply computed R2L in L + 1 layers and an embedding dimension of Td.

There is a function of T tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree  $2^{T}$ .

#### Theorem

Any function of T tokens which can be simply computed L2R in L layers and embedding dimension d can be simply computed R2L in L + 1 layers and an embedding dimension of Td.

Requires a huge embedding space

# Implication #2:

# a causal mask enlarges embeddings

Divide our micro-batch into two pieces:

- non-causal, non-predicted recent history (R)
- causal sequence of predicted tokens (C)
- Details:
  - the full micro-batch is:

$$[R_1, R_2, \ldots, R_r, C_1, C_2, \ldots, C_T]$$

- $R_i^{L+1}$  can depend on  $R_i^L$  for all pairs *i* and *j*.
- $C_i^{L+1}$  can only depend on  $C_i^L$  for  $j \leq i$ , and on any  $R_k^L$

Comparing a full causal model to a model divided into [R, C], running with the same compute and same number of parameters:

- causal: entropy = 3.4 nats/token
- [R, C]: entropy = 3.3 nats/token

- Some researchers like state space models
- Token  $\rightarrow$  hidden state  $\rightarrow$  next token

- Some researchers like state space models
- Token  $\rightarrow$  hidden state  $\rightarrow$  next token
- (Token  $\times$  hidden state)  $\rightarrow$  hidden state  $\rightarrow$  next

- Some researchers like state space models
- Token  $\rightarrow$  hidden state  $\rightarrow$  next token
- (Token  $\times$  hidden state)  $\rightarrow$  hidden state  $\rightarrow$  next
- Use a conditional random field to model the context
  - Looks like a state space model
  - But information flows in both direction

# Idea #3:

## Statistical vs computational batches

### LLM find patterns

 $\overline{L}(\text{random guessing}) = 15 = \log_2(60,000)$   $\overline{L}(\text{unigrams word frequency}) = 11.7 = \log_2(3300)$   $\overline{L}(\text{bigrams (aka Markov)}) = 8.8 = \log_2(500)$   $\overline{L}(\text{gzip (LZ compression)}) = 8.2 = \log_2(300)$   $\overline{L}(\text{small LLM}) = 7.5 = \log_2(200)$   $\overline{L}(\text{Humans})) \approx 4$   $\overline{L}(\text{LLM}) = 3.6 = \log_2(12)$ 

(All in bits per token. I did the small LLM. Shannon, Cover/King did the human subjects estimation.)

Palm masked out the first 10% of their tokens in every batch.

- Worked with a batch of 2000 tokens
- $Y_1, \ldots, Y_{t-1}$  used to predict  $Y_t$
- But only for *t* = 201, 202, ..., 2000
- First 200 tokens not predicted in this batch

Our recent / causal model:

- has 512 tokens in R
- has 512 tokens in C
- So only half of the microbatch is predicted

# Implication #3:

# Statistical length $\neq$ window length

## Use overlapping batches

L = batch size

• *s* = "stride" (the number of predictions made) Traditional batches:

| batch 1 | = | [1, <i>L</i> ]                           |
|---------|---|------------------------------------------|
| batch 2 | = | [ <i>L</i> + 1, <i>L</i> + <i>L</i> ]    |
| batch 3 | = | [2 <i>L</i> + 1, 2 <i>L</i> + <i>L</i> ] |
| batch 4 | = | [3L + 1, 3L + L]                         |
| ÷       | ÷ | :                                        |
| batch i | = | [ <i>iL</i> + 1, <i>iL</i> + <i>L</i> ]  |

## Use overlapping batches

L = batch size

• *s* = "stride" (the number of predictions made) Statistical batches:

| batch 1 | = | [1, <i>L</i> ]                          |
|---------|---|-----------------------------------------|
| batch 2 | = | [ <i>s</i> +1, <i>s</i> + <i>L</i> ]    |
| batch 3 | = | [2 <i>s</i> +1,2 <i>s</i> + <i>L</i> ]  |
| batch 4 | = | [3s + 1, 3s + L]                        |
| ÷       | ÷ | :                                       |
| batch i | = | [ <i>is</i> + 1, <i>is</i> + <i>L</i> ] |

Our [*R*, *L*] network which beat the standard transformer, consumed half as much data. We presented:

- complexity of chain of thought
- one way functions
- degrees of freedom
- Which implied we should:
  - use tiered NNs (roll-outs)
  - limit causal masks ([R, C] network)
  - distinguish statistical stride from window length

We presented:

- complexity of chain of thought
- one way functions
- degrees of freedom
- Which implied we should:
  - use tiered NNs (roll-outs)
  - limit causal masks ([R, C] network)
  - distinguish statistical stride from window length

# THANKS!

# **THANKS**!

