
TCS for LLMs

Dean Foster (@foster) and Dhruv Madeka (maded@)

November 5, 2023

Real LLM discussion involve hardware

What makes modern LLMs work:
GPUs
cache efficient access
bandwidth between caches
communication between devices and instances
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What can theory add?

Examples of cool theory:
1 “Auto-Regressive Next-Token Predictors are Universal

Learners”
2 “SGD learning on neural networks: leap complexity and

saddle-to-saddle dynamics”
3 saddle point escape
4 Many papers on two layer network theory
5 Many paper on the first step of SGD
6 µP
7 Matyroshka

And only 6 and 7 offer practical advice

Our goal: Useful theory



This talk: useful TCS for LLMs

I’ll present 3 short ideas with implications for real NNs:
1 complexity of chain of thought
2 trap door functions
3 statistical degrees of freedom

Idea #1:

Chain of thought

Bad question:

Is
√

2π
?
> e?

Good question:

Work out both sides of
√

2π
?
> e,

then say if it is true.

Best question:

Take a deep breath and work out

both sides of
√

2π
?
> e, then say

if it is true.

Theorem (Merrill and Sabharwal 2023)
An LLM can only answer questions in TC(0) if asked directly for
the answer. (arxiv)

Theorem (Daniel Hsu 2023)
An transformer LLM can answer the “two sum” problem, but to
answer a “three sum” requires it to be extremely wide.
(personal communications)

Theorem (F. and Madeka 2023, Folk theorem 2024)
Using chain of thought reasoning, an LLM can solve any
problem in PSPACE.
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Implication #1:

Feed the out of one NN into
another NN during training

Tiered model

Bottom tier:
training: usual transformer model
Generates “roll outs” (starting every 50
words or so)

Middle tiers:
training: Using history and rollout,
predict next word
generates new roll outs

Top tier:
Reads all roll outs and history
training: predictions the next word
inference: uses predictions to generate
actual word
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Idea #2:

One way functions

One way functions

A one way function is one where f (x) is easy to compute, but
f−1(y) is hard to compute.
Examples:

Cryptography
Effectively random functions
P vs NP

Causal mask

We process words sequentially in a transformer LLM.
Not as extreme as say in a LSTM
Still, all values are “time stamped”

Every node in a transformer has a time stamp
It only depends on tokens that came before that time stamp

Say more...

Extremely small embedding

Theorem
Suppose each layer i has nodes t such that
Ni,t = f (Ni−1,t ,Ni−1,t−1). Suppose further that Ni,t ∈ R1. Then
there exists polynomials with low complexity that take
exponential computation under this restriction.
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Theorem
Suppose each layer i has nodes t such that
Ni,t = f (Ni−1,t ,Ni−1,t−1). Suppose further that Ni,t ∈ R1. Then
there exists polynomials with low complexity that take
exponential computation under this restriction.

Example of what is going on:
bt = b2

t+1

Easy to compute from right to left
takes one multiply at each step
computing left to right requires raising to power x2T

Harder example:
bt = αt + βtbt+1 + γtb2

t+1

Easy to compute from right to left
computing left to right is a very complex polynomial

Extremely small embedding

Theorem
Suppose each layer i has nodes t such that
Ni,t = f (Ni−1,t ,Ni−1,t−1). Suppose further that Ni,t ∈ R1. Then
there exists polynomials with low complexity that take
exponential computation under this restriction.

Key point:
It needs to have a small context window
Any fixed size will have hard examples
We can compute R2L easy, but L2R is hard



Extremely small embedding

Theorem
Suppose each layer i has nodes t such that
Ni,t = f (Ni−1,t ,Ni−1,t−1). Suppose further that Ni,t ∈ R1. Then
there exists polynomials with low complexity that take
exponential computation under this restriction.

How to attack the theorem:
copy all data to the time t
do all the computation
Now as easy as R2L, but requires a huge embedding
dimension

Implication #2:

“encoder” plus transformer
network

Insert description here

Idea #3:

Statistical batch vs computational
batch

Statistics independence

Palm masked out the first 10% of their tokens in every batch.
Worked with a batch of 2000 tokens
Y1, . . . ,Yt−1 used to predict Yt

But only for t = 201,202, . . . ,2000
First 200 tokens not predicted in this batch

Statistics independence

Our encoder / decoder trick:
Encodes 9000 tokens
predicts next 1000 tokens
First 9000 not predicted in this batch



Implication #3:

Stride length 6= window length

Statistics independence

Trick to use more data:
L = batch size
S = “stride” (the number of predictions made)
Use batchs 0,L

Summary

I present:
1 complexity of chain of thought
2 trap door functions
3 degrees of freedom

This argued for the following modifications to LLM foundation
models:

rollout aware network
An encoder-decoder model {Dean: What word do we use
to replace encoder?}
better sampling of tokens
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THANKS!

Pointers (we’ll drop this .pdf in the chat)

MEMS
Big bench: 100s of hard problems.
PaLM and PaLM2 solve BigBench and professional exams
Magical hour talk (Sebastien Bubeck)
Magical 15 minute talk (Kahn of Kahn academy)
Prompt Engineering (Andrew Ng’s Prompt engineering)
nanoGPT on github (build an LLM from scratch in 2 hours)
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Compute: 1000s of GPUs

Communication: TBytes/s
Code: about 1000 lines
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(Need about 1000 to 10,000 A100s or H100s for 3 or 4 months.
So maybe 3 million dollars up to 100 million dollars.)
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nanoGPT github/video
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LLM find patterns

L(random guessing) = 15 = log2(60,000)
L(unigrams word frequency) = 11.7 = log2(3300)

L(bigrams (aka Markov)) = 8.8 = log2(500)
L(gzip (LZ compression)) = 8.2 = log2(300)

L(small LLM) = 7.5 = log2(200)
L(Humans)) ≈ 4

L(LLM) = 3.6 = log2(12)

(All in bits per token. I did the small LLM. Shannon, Cover/King
did the human subjects estimation.)

Point to point is faster than packets

MEMS


