

Macau, Calibeating and Fairness

Dean P. Foster

Statistics: Anything easily fixed isn't calibrated

Fix the obvious problems!

Game theory: Without incentives

Game theory: With incentives!

Calibration is a minimal condition for performance

- On sequence: 0101010 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1.9.1 . 9 . 1 . 9 ... is not calibrated

Calibration is a minimal condition for performance

- On sequence: 0101010 ...
- The constant forecast of .5 is calibrated
- The constant forecast of 6 is not calibrated
- The variable forecast of .1.9.1 . 9 . 1 . 9 ... is not calibrated
- But the forecast .1 .9.1.9.1 .9 ... is pretty good!
- Yes, it has better "refinement."
- But, it isn't calibrated.

Calibration is achievable

Theorem A calibrated forecast exists.

Calibration is achievable

Theorem

A calibrated forecast exists.

proof:

Apply mini-max theorem.
(Sergiu Hart-personal communications-1995)

Calibration is achievable

Theorem

A calibrated forecast exists.

Detailed proof:

- Game between the statistician and Nature.
- Fine the value of a $2^{2^{T}} \times 2^{2^{T}}$ matrix game.
- Happy game theorist, not so happy computational theorist.
- (Sergiu just wrote it up carefully-2023)

But that isn't what l'm going to tell you about today

But that isn't what l'm going to tell you about today

Instead: Three short talks

Which three talks

- First talk: Macau: Same as multi-calibration?
- First talk: Macau: Same as multi-calibration?
- Second talk: Calibeating: Also same as multi-calibration?
- First talk: Macau: Same as multi-calibration?
- Second talk: Calibeating: Also same as multi-calibration?
- Third talk: Some thoughts on fairness
- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better definition of error
- you falsify a forecast by betting against it
- The amount it loses is its macau.
- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better definition of error
- you falsify a forecast by betting against it
- The amount it loses is its macau.

Take Aways

crazy-Calibration + low-regret \Longrightarrow low-macau \Longrightarrow good decisions

Operationalizing falsifiability

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx E Y$
- Prove it wrong by winning lots of money:

$$
\text { expected winnings }=E(B(Y-\hat{Y}))
$$

- $(Y-\hat{Y})$ is a "fair" bet
- B is amount bet

Operationalizing falsifiability

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx E Y$
- Prove it wrong by winning lots of money:

$$
\text { expected winnings }=E(B(Y-\hat{Y}))
$$

- $(Y-\hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$
E(B(Y-\hat{Y}))
$$

(Start with bet B)

Operationalizing falsifiability

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx E Y$
- Prove it wrong by winning lots of money:

$$
\text { expected winnings }=E(B(Y-\hat{Y}))
$$

- $(Y-\hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$
\text { Macau } \equiv \max _{|B| \leq 1} E(B(Y-\hat{Y}))
$$

(worry about worst bet)

Operationalizing falsifiability

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx E Y$
- Prove it wrong by winning lots of money:

$$
\text { expected winnings }=E(B(Y-\hat{Y}))
$$

- $(Y-\hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$
\begin{gathered}
\min _{\hat{Y}} \max _{|B| \leq 1} E(B(Y-\hat{Y})) \\
(\text { mini-max })
\end{gathered}
$$

Crazy calibration variable

Y	X_{1}	X_{2}	X_{3}	X_{4}
Y_{1}	X_{11}	X_{12}	X_{13}	X_{14}
Y_{2}	X_{21}	X_{22}	X_{23}	X_{24}
Y_{3}	X_{31}	X_{32}	X_{33}	X_{34}
Y_{4}	X_{41}	X_{42}	X_{43}	X_{44}
\vdots	\vdots	\vdots	\vdots	\vdots
Y_{t}	$X_{t 1}$	$X_{t 2}$	$X_{t 3}$	$X_{t 4}$

Starting with our data that we observed up to time t

Crazy calibration variable

Y	X_{1}	X_{2}	X_{3}	X_{4}
Y_{1}	X_{11}	X_{12}	X_{13}	X_{14}
Y_{2}	X_{21}	X_{22}	X_{23}	X_{24}
Y_{3}	X_{31}	X_{32}	X_{33}	X_{34}
Y_{4}	X_{41}	X_{42}	X_{43}	X_{44}
\vdots	\vdots	\vdots	\vdots	\vdots
Y_{t}	$X_{t 1}$	$X_{t 2}$	$X_{t 3}$	$X_{t 4}$

$$
\hat{\beta}_{t}=\arg \min _{\beta} \sum_{i=1}^{t}\left(Y_{i}-\beta^{\prime} X_{i}\right)^{2}
$$

We can fit $\hat{\beta}_{t}$ on everything up to time t

Crazy calibration variable

From a new X_{t+1} we can compute \hat{Y}_{t+1}

Crazy calibration variable

Y	X_{1}	X_{2}	X_{3}	X_{4}	
Y_{1}	X_{11}	X_{12}	X_{13}	X_{14}	0
Y_{2}	X_{21}	X_{22}	X_{23}	X_{24}	$\hat{\beta}_{1}$
Y_{3}	X_{31}	X_{32}	X_{33}	X_{34}	$\hat{\beta}_{2}$
Y_{4}	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_{3}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
Y_{t}	$X_{t 1}$	$X_{t 2}$	$X_{t 3}$	$X_{t 4}$	$\hat{\beta}_{t-1}$

Looking at only the first part of the data, we can generate:

$$
\begin{array}{llllll}
\hat{\beta}_{0}, & \hat{\beta}_{1}, & \hat{\beta}_{2}, & \hat{\beta}_{3}, & \hat{\beta}_{4}, & \ldots,
\end{array}
$$

Crazy calibration variable

| Y | X_{1} | X_{2} | X_{3} | X_{4} | $\hat{\beta}$ | \hat{Y} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_{1} | X_{11} | X_{12} | X_{13} | X_{14} | 0 | $\hat{Y}_{1}=0$ |
| Y_{2} | X_{21} | X_{22} | X_{23} | X_{24} | $\hat{\beta}_{1}$ | $\hat{Y}_{2}=\hat{\beta}_{1}^{\prime} X_{2}$ |
| Y_{3} | X_{31} | X_{32} | X_{33} | X_{34} | $\hat{\beta}_{2}$ | $\hat{Y}_{3}=\hat{\beta}_{2}^{\prime} X_{3}$ |
| Y_{4} | X_{41} | X_{42} | X_{43} | X_{44} | $\hat{\beta}_{3}$ | $\hat{Y}_{4}=\hat{\beta}_{3}^{\prime} X_{4}$ |
| \vdots |
| Y_{t} | $X_{t 1}$ | $X_{t 2}$ | $X_{t 3}$ | $X_{t 4}$ | $\hat{\beta}_{t-1}$ | $\hat{Y}_{t}=\hat{\beta}_{t-1}^{\prime} X_{t}$ |

Each of these leads to a next round

$$
\begin{array}{lllll}
\hat{Y}_{1}, & \hat{Y}_{2}, & \hat{Y}_{3}, & \hat{Y}_{4}, & \ldots,
\end{array} \hat{Y}_{t}
$$

Crazy calibration variable

Y	X_{1}	χ_{2}	χ_{3}	X_{4}	$\hat{\beta}$	\hat{Y}
Y_{1}	X_{11}	X_{12}	X_{13}	X_{14}	0	$\hat{Y}_{1}=0$
Y_{2}	χ_{21}	χ_{22}	χ_{23}	X_{24}	$\hat{\beta}_{1}$	$\hat{Y}_{2}=\hat{\beta}_{1}^{\prime} X_{2}$
Y_{3}	χ_{31}	χ_{32}	χ_{33}	χ_{34}	$\hat{\beta}_{2}$	$\hat{\gamma}_{3}=\hat{\beta}_{2}^{\prime} X_{3}$
Y_{4}	X_{41}	X_{42}	χ_{43}	X_{44}	$\hat{\beta}_{3}$	$\hat{Y}_{4}=\hat{\beta}_{3}^{\prime} X_{4}$
\vdots	:	\vdots	:	:		
Y_{t}	$X_{t 1}$	$\chi_{\text {t2 }}$	$X_{t 3}$	$X_{t 4}$	$\hat{\beta}_{t-1}$	$\hat{Y}_{t}=\hat{\beta}_{t-1}^{\prime} X$

Theorem (F. 1991, Forster 1999)

Such an on-line least squares forecast generates low regret:

$$
\sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2}-\min _{\beta} \sum_{t=1}^{T}\left(Y_{t}-\beta^{\prime} X_{t}\right)^{2} \leq O(\log (T))
$$

Crazy calibration variable

| Y | X_{1} | X_{2} | X_{3} | X_{4} | ${ }^{2}$ | \hat{Y} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_{1} | X_{11} | X_{12} | X_{13} | X_{14} | | |
| Y_{2} | X_{21} | X_{22} | X_{23} | X_{24} | $\hat{\beta}_{1}$ | $\hat{Y}_{1}=0$ |
| Y_{3} | X_{31} | X_{32} | X_{33} | X_{34} | $\hat{\beta}_{2}^{\prime} X_{2}$ | $\hat{Y}_{3}=\hat{\beta}_{2}^{\prime} X_{3}$ |
| Y_{4} | X_{41} | X_{42} | X_{43} | X_{44} | $\hat{\beta}_{3}$ | $\hat{Y}_{4}=\hat{\beta}_{3}^{\prime} X_{4}$ |
| \vdots |
| Y_{t} | $X_{t 1}$ | $X_{t 2}$ | $X_{t 3}$ | $X_{t 4}$ | $\hat{\beta}_{t-1}$ | $\hat{Y}_{t}=\hat{\beta}_{t-1}^{\prime} X_{t}$ |

Works no matter what the X 's are.
Example: Use previous $X_{t, i}=\hat{Y}_{t-i}$. (F. and Stine 2021)
But we are going to go one better: $X_{t}=\hat{Y}_{t}$.

Crazy calibration variable

| Y | X_{1} | X_{2} | X_{3} | X_{4} | $\hat{\beta}$ | \hat{Y} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_{1} | X_{11} | X_{12} | \hat{Y}_{1} | X_{14} | 0 | $\hat{Y}_{1}=0$ |
| Y_{2} | X_{21} | X_{22} | \hat{Y}_{2} | X_{24} | $\hat{\beta}_{1}$ | $\hat{Y}_{2}=\hat{\beta}_{1}^{\prime} X_{2}$ |
| Y_{3} | X_{31} | X_{32} | \hat{Y}_{3} | X_{34} | $\hat{\beta}_{2}$ | $\hat{Y}_{3}=\hat{\beta}_{2}^{\prime} X_{3}$ |
| Y_{4} | X_{41} | X_{42} | \hat{Y}_{4} | X_{44} | $\hat{\beta}_{3}$ | $\hat{Y}_{4}=\hat{\beta}_{3}^{\prime} X_{4}$ |
| \vdots |
| Y_{t} | $X_{t 1}$ | $X_{t 2}$ | \hat{Y}_{t} | $X_{t 4}$ | $\hat{\beta}_{t-1}$ | $\hat{Y}_{t}=\hat{\beta}_{t-1}^{\prime} X_{t}$ |

Theorem holds when one of the X_{t} 's is \hat{Y}_{t} !

Crazy calibration variable

Y	X_{1}	X_{2}	X_{3}	X_{4}	${ }^{\circ}$	\hat{Y}
Y_{1}	X_{11}	X_{12}	\hat{Y}_{1}	X_{14}		
Y_{2}	X_{21}	X_{22}	\hat{Y}_{2}	X_{24}	$\hat{\beta}_{1}$	$\hat{Y}_{1}=0$
Y_{3}	X_{31}	X_{32}	\hat{Y}_{3}	X_{34}	$\hat{\beta}_{2}^{\prime} X_{2}$	$\hat{Y}_{3}=\hat{\beta}_{2}^{\prime} X_{3}$
Y_{4}	X_{41}	X_{42}	\hat{Y}_{4}	X_{44}	$\hat{\beta}_{3}$	$\hat{Y}_{4}=\hat{\beta}_{3}^{\prime} X_{4}$
\vdots						
Y_{t}	$X_{t 1}$	$X_{t 2}$	\hat{Y}_{t}	$X_{t 4}$	$\hat{\beta}_{t-1}$	$\hat{Y}_{t}=\hat{\beta}_{t-1}^{\prime} X_{t}$

Theorem (\Longrightarrow F. and Kakade 2008, F. and Hart 2018)

Adding the crazy calibration variable generates low macau:

$$
\text { (甘i) } \sum_{t=1}^{T} X_{t, i}\left(Y_{t}-\hat{Y}_{t}\right)=O(\sqrt{T \log (T)})
$$

Macau as the "normal equation"
$E(Y \mid X) \quad$ Least squares Normal equations

Statistics | $\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$ | $\sum X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)=0$ |
| :--- | :--- |

The normal equation is the same as:

$$
\left.\max _{\alpha} \sum_{i} \alpha^{\prime} X_{i}\left(Y_{i}-\beta^{\prime} X_{i}\right)\right)=0
$$

Which is solved by the β minimizer:

$$
\left.\min _{\beta} \max _{\alpha} \sum_{i} \alpha^{\prime} X_{i}\left(Y_{i}-\beta^{\prime} X_{i}\right)\right)=0
$$

Macau as the "normal equation"

Macau as the "normal equation"

$E(Y \mid X) \quad$ Least squares Normal equations

Statistics | $\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$ | $\min _{\beta} \max _{\alpha} \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$ |
| :--- | :--- |
| $\min _{f} E((Y-\underbrace{f(X)}_{\text {aka } E(Y \mid X)})^{2})$ | $(\forall g) E(g(X)(Y-f(X)))=0$ |

The normal equation is the same as:

$$
\max _{g} E(g(X)(Y-f(X)))=0
$$

Which is solved by the $f(\cdot)$ minimizer:

$$
\min _{f} \max _{g} E(g(X)(Y-f(X)))=0
$$

Macau as the "normal equation"

$E(Y \mid X)$ Least squares Normal equations

Statistics | $\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$ | $\min _{\beta} \max _{\alpha} \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$ |
| :--- | :--- |
| Probability | $\min _{f} E((Y-\underbrace{f(X)}_{\text {aka } E(Y \mid X)})^{2})$ | $\min _{f} \max _{g} E(g(X)(Y-f(X))) \quad$.

Macau as the "normal equation"

$E(Y \mid X)$	Least squares	Normal equations
Statistics	$\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$	$\min _{\beta} \max _{\alpha} \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$
Probability	$\min _{f} E((Y-\underbrace{f(X)}_{a k a E(Y \mid X)})^{2})$	$\min _{f} \max _{g} E(g(X)(Y-f(X)))$
online	low regret	low macau

$$
\text { Regret } \equiv \sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2}-\min _{\beta} \sum_{t=1}^{T}\left(Y_{t}-\beta \cdot X_{t}\right)^{2}
$$

Macau as the "normal equation"

$E(Y \mid X)$	Least squares	Normal equations
Statistics	$\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$	$\min _{\beta} \max _{\alpha} \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$
Probability	$\min _{f} E((Y-\underbrace{f(X)}_{\text {aka } E(Y \mid X)})^{2})$	$\min _{f} \max _{g} E(g(X)(Y-f(X)))$
	low regret	low macau

$$
\text { Macau } \equiv \max _{\alpha:|\alpha| \leq 1} \sum_{t=1}^{T} \alpha \cdot X_{t}\left(Y_{t}-\hat{Y}_{t}\right)
$$

Macau as the "normal equation"

$E(Y \mid X) \quad$ Least squares Normal equations

Statistics	$\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$	$\min _{\beta} \max _{\alpha} \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$
Probability	$\min _{f} E((Y-\underbrace{f(X)}_{a k a E(Y \mid X)})^{2})$	$\min _{f} \max _{g} E(g(X)(Y-f(X)))$
online	low regret	low macau

- statistics: Least squares \Longleftrightarrow normal equations
- probability: Least squares \Longleftrightarrow normal equations

Macau as the "normal equation"

$E(Y \mid X) \quad$ Least squares Normal equations

Statistics	$\min _{\beta} \sum\left(Y_{i}-\beta \cdot X_{i}\right)^{2}$	$\min _{\beta} \max _{\alpha} \sum \sum \alpha \cdot X_{i}\left(Y_{i}-\beta \cdot X_{i}\right)$
Probability	$\min _{f} E((Y-\underbrace{f(X)}_{a k a E(Y \mid X)})^{2})$	$\min _{f} \max _{g} E(g(X)(Y-f(X)))$
online	low regret	low macau

Take Aways

low regret

How about a bet?
no regret min/ms not talsifilied

Not falsified \nRightarrow no regret

t	1	2	3	4	\cdots	T	$\mathrm{~T}+1$	\cdots
Y_{t}	0	1	0	1	\cdots	0	1	\cdots
X_{t}	1	1	1	1	\cdots	1	1	\cdots
\hat{Y}_{t}	.6	.4	.6	.4	\cdots	.6	.4	\cdots

- Macau is zero
- Regret is $T / 9$
- So: low macau \nRightarrow low regret

low regret \Longleftrightarrow low macau

How about a bet?
no regret $=m / m$ not falsitiled

Not falsified \nRightarrow no regret

t	1	2	3	4	\cdots	T	$\mathrm{~T}+1$	\cdots
Y_{t}	0	1	0	1	\cdots	0	1	\cdots
X_{t}	1	1	1	1	\cdots	1	1	\cdots
\hat{Y}_{t}	.6	.4	.6	.4	\cdots	.6	.4	\cdots

- Macau is zero
- Regret is $T / 9$
- So: low macau \Rightarrow low regret
(Skipping these proofs)

Why is low macau useful?

$$
C(a)=\sum_{t=1}^{T} c_{t}(a) \quad a^{*} \equiv \arg \min _{a} C(a)
$$

- Supposed each $c_{t}(\cdot)$ is convex
- Goal: play a to minimize $C(a)$
- Eg: We could use SGD on $\nabla c_{t}()$
- called "on-line convex optimization" with regret:

$$
\text { regret } \equiv \sum_{t=1}^{T}\left(c_{t}\left(\hat{a}_{t}\right)-c_{t}\left(a^{*}\right)\right)
$$

Why is low macau useful?

$$
C(a)=\sum_{t=1}^{T} c_{t}(a) \quad a^{*} \equiv \arg \min _{a} C(a)
$$

The regret is bounded by the gradient:

$$
\begin{aligned}
\text { regret } & =\sum_{t=1}^{T}\left(c_{t}\left(\hat{a}_{t}\right)-c_{t}\left(a^{*}\right)\right) \\
& \leq \sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot \nabla c_{t}\left(\hat{a}_{t}\right)
\end{aligned}
$$

Why is low macau useful?

$$
C(a)=\sum_{t=1}^{T} c_{t}(a) \quad a^{*} \equiv \arg \min _{a} C(a)
$$

The regret is bounded by the gradient:

$$
\begin{aligned}
\text { regret } & =\sum_{t=1}^{T}\left(c_{t}\left(\hat{a}_{t}\right)-c_{t}\left(a^{*}\right)\right) \\
& \leq \sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot \nabla c_{t}\left(\hat{a}_{t}\right) \\
& =\sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot\left(\nabla c_{t}\left(\hat{a}_{t}\right)-\widehat{\nabla c_{t}}\left(\hat{a}_{t}\right)\right)+\left(\hat{a}_{t}-a^{*}\right) \cdot \widehat{\nabla c_{t}}\left(\hat{a}_{t}\right)
\end{aligned}
$$

Why is low macau useful?

$$
C(a)=\sum_{t=1}^{T} c_{t}(a) \quad a^{*} \equiv \arg \min _{a} C(a)
$$

The regret is bounded by the gradient:

$$
\begin{aligned}
\text { regret } & =\sum_{t=1}^{T}\left(c_{t}\left(\hat{a}_{t}\right)-c_{t}\left(a^{*}\right)\right) \\
& \leq \sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot \nabla c_{t}\left(\hat{a}_{t}\right) \\
& =\underbrace{\sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot\left(\nabla c_{t}\left(\hat{a}_{t}\right)-\widehat{\nabla c_{t}}\left(\hat{a}_{t}\right)\right)}_{\text {(macau!) }}+\left(\hat{a}_{t}-a^{*}\right) \cdot \underbrace{\widehat{\nabla c_{t}}\left(\hat{a}_{t}\right)}_{\text {(zero } \left.\widehat{\hat{a}}_{t}\right)}
\end{aligned}
$$

Why is low macau useful?

$$
C(a)=\sum_{t=1}^{T} c_{t}(a) \quad a^{*} \equiv \arg \min _{a} C(a)
$$

The regret is bounded by the gradient:

$$
\begin{aligned}
\text { regret } & =\sum_{t=1}^{T}\left(c_{t}\left(\hat{a}_{t}\right)-c_{t}\left(a^{*}\right)\right) \\
& \leq \sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot \nabla c_{t}\left(\hat{a}_{t}\right) \\
& =\sum_{t=1}^{T}\left(\hat{a}_{t}-a^{*}\right) \cdot\left(\nabla c_{t}\left(\hat{a}_{t}\right)-\widehat{\nabla c_{t}}\left(\hat{a}_{t}\right)\right)+\left(\hat{a}_{t}-a^{*}\right) \cdot \widehat{\nabla c_{t}}\left(\hat{a}_{t}\right) \\
\text { regret } & \leq \text { macau }
\end{aligned}
$$

Theorem (\Longrightarrow F. and Kakade 2008, \Longleftarrow new)

Let R be the quadratic regret of a forecast \hat{Y}_{t} against a linear regression on X_{t}. Let M be the Macau of \hat{Y}_{t} using linear functions of X_{t} to create falsifying bets. Then if we have the crazy calibration variable (i.e. $\left[X_{t}\right]_{0}=\hat{Y}_{t}$), then

$$
R=o(T) \quad \text { iff } \quad M=o(T)
$$

Theorem (\Longrightarrow F. and Kakade 2008, \Longleftarrow new)

Let R be the quadratic regret of a forecast \hat{Y}_{t} against a linear regression on X_{t}. Let M be the Macau of \hat{Y}_{t} using linear functions of X_{t} to create falsifying bets. Then if we have the crazy calibration variable (i.e. $\left[X_{t}\right]_{0}=\hat{Y}_{t}$), then

$$
R=o(T) \quad \text { iff } \quad M=o(T)
$$

Proof sketch: Consider the forecasts $(1-w) \hat{Y}_{t}+w \alpha \cdot X_{t}$ for the any α. Let $Q(w)$ be the total quadratic error of this family of forecast. The following are equivalent:

- $Q(0) \leq Q(w)$ (No regret condition)
- $Q^{\prime}(0)$ is zero. (No macau condition)

Theorem (\Longrightarrow F. and Kakade 2008, \Longleftarrow new)

Let R be the quadratic regret of a forecast \hat{Y}_{t} against a linear regression on X_{t}. Let M be the Macau of \hat{Y}_{t} using linear functions of X_{t} to create falsifying bets. Then if we have the crazy calibration variable (i.e. $\left[X_{t}\right]_{0}=\hat{Y}_{t}$), then

$$
R=o(T) \quad \text { iff } \quad M=o(T)
$$

Note: Typically, $R=O(\log (T))$ iff $M=\tilde{O}(\sqrt{T})$ for the actual algorithms I know.
(S. Rakhlin and D. Foster have a proof for IID.)

- List bets that you would make to show \hat{a}_{t} is not optimal
- Convert these to regression variables
- Add the crazy-calibration variable
- Run a low regret least squares algorithm
- Make decision based on this forecast

That is Macau

Take Aways
 crazy-Calibration + low-regret \Longleftrightarrow low-macau \Longrightarrow good decisions

- Predicting the "grand average" is calibrated
- But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
- probabilistic models
- Time series: ARIMA, etc
- on-line least squares regression
- Combining experts
- None are guaranteed to be calibrated
- Predicting the "grand average" is calibrated
- But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
- probabilistic models
- Time series: ARIMA, etc
- on-line least squares regression
- Combining experts
- None are guaranteed to be calibrated

Goal: Find a way to convert these good forecasts into calibrated forecasts without removing their goodness.

Recall our "good" by not calibrated forecast from the introduction:

- On sequence: 0101010 ...
- The constant forecast of .5 is calibrated
- The variable forecast of .1 .9.1.9.1.9 ... is not calibrated
- It has better fit: called "refinement."
- But, it isn't calibrated.
- Our goal: Keep this refinement, but make it calibrated
- bias:

$$
\beta \equiv E(Y \mid \hat{Y})-\hat{Y}
$$

- variance:

$$
\operatorname{VAR}=\operatorname{Var}(Y-E(Y \mid \hat{Y}))
$$

- Mean Squared error:

$$
\mathrm{MSE}=E(Y-\hat{Y})^{2}=E\left(\beta^{2}\right)+\mathrm{VAR}
$$

- For binary sequences:
- Bias is called Calibration
- Variance is called Refinement
- MSE is called Brier Score
- "Conditional expectation":

$$
\rho(x)=\frac{\sum_{t} Y_{t} \hat{y}_{\hat{y}_{t}}=x}{\sum \hat{y}_{t}=x}
$$

- Bias: $\beta(x)=\rho(x)-x$
- Brier score / MSE:

$$
B S=\frac{1}{T} \sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2}
$$

- Decomposition (MSE = bias + Variance):

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2}}_{B S}=\underbrace{\frac{1}{T} \sum^{T}(\hat{Y}-\rho(\hat{Y}))^{2}}_{\text {Calibration }}+\underbrace{\frac{1}{T} \sum^{T}\left(Y_{t}-\rho\left(\hat{Y}_{t}\right)\right)^{2}}_{\text {Refinement }}
$$

Defining calibeating

Calibration is fixable after the fact.

- But, can we fix it as we go along?
- Start with a forecast \hat{y}_{t}
- Calibration $K(\hat{y})$
- Refinement $R(\hat{y})$

Find a new forecast \tilde{y}_{t} that doesn't pay the calibration costs of \hat{y}

Definition (Calibeating)

\tilde{y} calibeats \hat{y} if:

$$
\mathrm{BS}(\tilde{y}) \leq R(\hat{y}) .
$$

- \tilde{y} keeps any patterns found by \hat{y}
- \tilde{y} doesn't "pay" the calibration error

Calibeating many forecasters

We can extend this to calibeating many forecasters.

Definition (Calibeating)

\tilde{y} calibeats a collection of forecasts $\left\{\hat{y}^{1}, \ldots, \hat{y}^{n}\right\}$ if for all i :

$$
\mathrm{BS}(\tilde{y}) \leq R\left(\hat{y}^{\prime}\right) .
$$

Calibeating is easy

- Algorithm to calibeat a family of forecasts: \hat{y}_{t}^{i}
- Break up the interval $[0,1]$ into small buckets B_{j}.
- Intersect the buckets
- Compute the average on each bucket

Theorem

The forecast combination \tilde{y}_{t} will ϵ-calibeat \hat{y}_{t}^{i} if we use buckets with width less than ϵ.

We can find \tilde{y} that calibeats \hat{y}. But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

We can find \tilde{y} that calibeats \hat{y}. But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

- This can go on ad infinitum

We can have C_{t} calibeat A_{t} and B_{t}.

- Suppose at each time t we pick $B_{t}=C_{t}$.
- Requires a fixed point computation
- C_{t} calibeats A_{t}
- C_{t} calibeats C_{t} :

$$
B S\left(C_{t}\right) \leq R\left(C_{t}\right)
$$

So C_{t} is calibrated.

Theorem

For any set of forecasts, there is a combination forecast which calibeats each element in the set, and is also calibrated.

If we use this theorem with an empty set then C is calibrated:
Corollary
If C calibeats itself, then C is calibrated.

Suppose we will forecast C_{t}. The calibeating algorithm would say we should instead forecast $g\left(A_{t}, C_{t}\right)$. If this happens to be C_{t}, we are done. Ignoring A_{t} this means we want $C_{t}=g\left(C_{t}\right)$.

About fixed points

Suppose we will forecast C_{t}. The calibeating algorithm would say we should instead forecast $g\left(A_{t}, C_{t}\right)$. If this happens to be C_{t}, we are done. Ignoring A_{t} this means we want $C_{t}=g\left(C_{t}\right)$.

Theorem (Outgoing distribution)

There exists a probability distribution on C such that:

$$
E\left(|x-C|^{2}-|x-g(C)|^{2}\right) \leq \delta^{2}
$$

for all x.
Proof is via the mini-max theorem (so linear programming can find the answer.)

- This means the BS of using C is better than the BS of using the correct answer $g(C)$.

True fixed points

Theorem (Outgoing fixed point)

For any smooth $g()$ and any closed convex set \mathcal{S}, there exists a point $C \in \mathcal{S}$ such that:

$$
E\left(|x-C|^{2}-|x-g(C)|^{2}\right) \leq 0
$$

for all $x \in \mathcal{S}$.
Proof is via the Brouwer's fixed point. In fact, it is equivalent to Brouwer's fixed point theorem.

True fixed points

Theorem (Outgoing fixed point)

For any smooth $g()$ and any closed convex set \mathcal{S}, there exists a point $C \in \mathcal{S}$ such that:

$$
E\left(|x-C|^{2}-|x-g(C)|^{2}\right) \leq 0
$$

for all $x \in \mathcal{S}$.

- Can create a deterministic "weak" calibration

Theorem (Outgoing fixed point)

For any smooth $g()$ and any closed convex set \mathcal{S}, there exists a point $C \in \mathcal{S}$ such that:

$$
E\left(|x-C|^{2}-|x-g(C)|^{2}\right) \leq 0
$$

for all $x \in \mathcal{S}$.

- Using rounding, it can create a local random calibrated forecast
- Randomly round to nearest grid point
- First few digits aren't random, just the least significant one
- Need this minimal amount of rounding to avoid impossibility result mentioned this morning

True fixed points

Theorem (Outgoing fixed point)

For any smooth $g()$ and any closed convex set \mathcal{S}, there exists a point $C \in \mathcal{S}$ such that:

$$
E\left(|x-C|^{2}-|x-g(C)|^{2}\right) \leq 0
$$

for all $x \in \mathcal{S}$.

- Fixed points are hard to find
- Basically need to do exhaustive search at every time period
- CS people call complexity class PPAD

We've have four forms of calibeating:

simple	Distribution	local random	deterministic
LS or average	LP	Fixed point	Fixed point
ealibrated	classic calibration	Both classic and weak	Weak
quadratic safe	Not quadratic safe	quadratic safe	quadratic safe

Final topic: Thoughts on what to calibrate

- Consider predicts used for college admissions
- We'll call the prediction: SAT
- We'll call the Y variable: GPA
- We are interested in fair incentives
- The incentive story works better for employment,
- But the names will be useful, so we'll stick with college admissions

Regress Y on X or regression X on Y ?

- Basic discrimination:

$$
E(\mathrm{GPA} \mid \text { blue, } \mathrm{SAT}=\mathrm{x})>E(\mathrm{GPA} \mid \text { orange, } \mathrm{SAT}=\mathrm{x})
$$

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"

Regress Y on X or regression X on Y ?

- Basic discrimination:

$$
E(\mathrm{GPA} \mid \text { blue, } \mathrm{SAT}=\mathrm{x})>E(\mathrm{GPA} \mid \text { orange, } \mathrm{SAT}=\mathrm{x})
$$

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"
- But even if
$E(\mathrm{GPA} \mid$ blue, $\mathrm{SAT}=\mathrm{x})=E(\mathrm{GPA} \mid$ orange, $\mathrm{SAT}=\mathrm{x})$
we might have:

$$
E(\text { SAT } \mid \text { blue, skill }=\mathrm{y})<E(\mathrm{SAT} \mid \text { orange, skill }=\mathrm{y})
$$

- So still better off being Orange!
- Traditional regression:

$$
\min _{f} E\left((Y-f(X))^{2}\right)
$$

- Reverse regression:

$$
\min _{g} E\left((g(Y)-X)^{2}\right)
$$

- Even if $f()$ and $g()$ are linear, $f \neq g^{-1}$
- (unless we have a perfect fit)
- Called regression to the mean
- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
- Fair incentives
- Economics won't come to this solution with Laissez-faire
- Needs government intervention (F. and Vohra, 1992)
- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
- Fair incentives
- Economics won't come to this solution with Laissez-faire
- Needs government intervention (F. and Vohra, 1992)
- Fairness then is best approximated by:

$$
E(\mathrm{SAT} \mid \text { blue, } \mathrm{GPA}=\mathrm{y}) \approx E(\mathrm{SAT} \mid \text { orange, } \mathrm{GPA}=\mathrm{y})
$$

Me:

- - (1991) "Prediction in the worst case."
- — and R. Vohra (1991-1998) "Asymptotic Calibration."
- — and R. Vohra (1992) "...Affirmative Action."
- - and S. Kakade "Deterministic calibration and Nash."
- — and S. Hart (2021) "...Leaky forecasts" (easier reading).
- — and S. Hart (2022) "Calibeating."
- — and R. Stine (2021) "Martingales and forecasts."

Dylan:

- Dylan Foster and Sasha Rakhlin (2021) "SquareCB." Jürgen:
- J. Forster (1999) "...Linear Regression."

Take Aways
crazy-Calibration + low-regret \Longleftrightarrow low-macau

2: \begin{tabular}{c|c|c|c}
simple \& Distribution \& local random \& deterministic

\hline | LS or |
| :---: |
| average | \& LP \& Fixed point \& Fixed point

\hline ealibrated \& | classic |
| :---: |
| calibration | \& | Both classic |
| :---: |
| and weak | \& Weak

\hline
\end{tabular}

2: \begin{tabular}{c|c|c|c}
simple \& Distribution \& local random \& deterministic

\hline | LS or |
| :---: |
| average | \& LP \& Fixed point \& Fixed point

\hline ealibrated \& | classic |
| :---: |
| calibration | \& | Both classic |
| :---: |
| and weak | \& Weak

\hline
\end{tabular}

3: \quad Calibrate SATs given GPAs

2: \begin{tabular}{c|c|c|c}
simple \& Distribution \& local random \& deterministic

\hline | LS or |
| :---: |
| average | \& LP \& Fixed point \& Fixed point

\hline ealibrated \& | classic |
| :---: |
| calibration | \& | Both classic |
| :---: |
| and weak | \& Weak

\hline
\end{tabular}

3: \quad Calibrate SATs given GPAs

Thanks!

