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Statistics: Anything easily fixed isn’t calibrated
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Game theory: Without incentives
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Game theory: With incentives!
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On-line Calibration

Calibration is a minimal condition for performance
On sequence: 0 1 0 1 0 1 0 ...
The constant forecast of .5 is calibrated
The constant forecast of .6 is not calibrated
The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

But the forecast .1 .9 .1 .9 .1 .9 ... is pretty good!
Yes, it has better “refinement.”
But, it isn’t calibrated.
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Calibration is achievable

Theorem
A calibrated forecast exists.
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Calibration is achievable

Theorem
A calibrated forecast exists.

proof:
Apply mini-max theorem.

(Sergiu Hart–personal communications–1995)
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Calibration is achievable

Theorem
A calibrated forecast exists.

Detailed proof:
Game between the statistician and Nature.
Fine the value of a 22T × 22T

matrix game.
Happy game theorist, not so happy computational theorist.
(Sergiu just wrote it up carefully–2023)

5 / 35



But that isn’t what I’m going to tell you about today

Instead: Three short talks
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Which three talks

First talk: Macau: Same as multi-calibration?
Second talk: Calibeating: Also same as multi-calibration?
Third talk: Some thoughts on fairness
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Macau in one slide

Setting: On-line decision making
(aka adversarial data or robust time series)
Goal: Use economic forecasts for decision making

Problem: Accuracy doesn’t guarantee good decisions
(We’ll take “accuracy” = “low regret.” Regret compares actual
decisions to “20/20 hindsight.” 100s of papers say how to get low
regret.)
Solution: Falsifiable is better definition of error

you falsify a forecast by betting against it
The amount it loses is its macau.

Take Aways
crazy-Calibration + low-regret =⇒ low-macau =⇒ good decisions
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Operationalizing falsifiability

We will falsify someone’s claim by winning bets placed
against them

Claim: Ŷ ≈ EY
Prove it wrong by winning lots of money:

expected winnings = E
(

B (Y − Ŷ )
)

(Y − Ŷ ) is a “fair” bet
B is amount bet

How to avoid being proven wrong by:

min
Ŷ

max
|B|≤1

E
(

B (Y − Ŷ )
)
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(Start with bet B)
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Claim: Ŷ ≈ EY
Prove it wrong by winning lots of money:

expected winnings = E
(

B (Y − Ŷ )
)

(Y − Ŷ ) is a “fair” bet
B is amount bet

How to avoid being proven wrong by:

min
Ŷ

Macau ≡ max
|B|≤1

E
(

B (Y − Ŷ )
)

(worry about worst bet)
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Operationalizing falsifiability

We will falsify someone’s claim by winning bets placed
against them

Claim: Ŷ ≈ EY
Prove it wrong by winning lots of money:

expected winnings = E
(

B (Y − Ŷ )
)

(Y − Ŷ ) is a “fair” bet
B is amount bet

How to avoid being proven wrong by:

min
Ŷ

max
|B|≤1

E
(

B (Y − Ŷ )
)

(mini-max)
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Crazy calibration variable

Y X1 X2 X3 X4

β̂ Ŷ

Y1 X11 X12 X13

Ŷ1

X14

0 Ŷ1 = 0

Y2 X21 X22 X23

Ŷ2

X24

β̂1 Ŷ2 = β̂′
1X2

Y3 X31 X32 X33

Ŷ3

X34

β̂2 Ŷ3 = β̂′
2X3

Y4 X41 X42 X43

Ŷ4

X44

β̂3 Ŷ4 = β̂′
3X4

...
...

...
...

...

...
...

Yt Xt1 Xt2 Xt3

Ŷt

Xt4

β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Starting with our data that we observed up to time t
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Y1 X11 X12 X13

Ŷ1
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Ŷt

Xt4

β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4

β̂t = argminβ
∑t

i=1(Yi − β′Xi)
2

Ŷt+1 = β̂′
tXt+1

We can fit β̂t on everything up to time t
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Ŷ2

X24
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t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 β̂t Ŷt+1 = β̂′
tXt+1

From a new Xt+1 we can compute Ŷt+1
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Crazy calibration variable

Y X1 X2 X3 X4 β̂

Ŷ

Y1 X11 X12 X13

Ŷ1
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...
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...
...

...
...

...

Yt Xt1 Xt2 Xt3

Ŷt

Xt4 β̂t−1

Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Looking at only the first part of the data, we can generate:

β̂0, β̂1, β̂2, β̂3, β̂4, . . . , β̂t−1

10 / 35



Crazy calibration variable

Y X1 X2 X3 X4 β̂ Ŷ
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Ŷt

Xt4 β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Each of these leads to a next round

Ŷ1, Ŷ2, Ŷ3, Ŷ4, . . . , Ŷt
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Crazy calibration variable

Y X1 X2 X3 X4 β̂ Ŷ
Y1 X11 X12 X13

Ŷ1

X14 0 Ŷ1 = 0
Y2 X21 X22 X23

Ŷ2

X24 β̂1 Ŷ2 = β̂′
1X2

Y3 X31 X32 X33

Ŷ3

X34 β̂2 Ŷ3 = β̂′
2X3

Y4 X41 X42 X43

Ŷ4

X44 β̂3 Ŷ4 = β̂′
3X4

...
...

...
...

...
...

...
Yt Xt1 Xt2 Xt3

Ŷt

Xt4 β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Theorem (F. 1991, Forster 1999)
Such an on-line least squares forecast generates low regret:

T∑
t=1

(Yt − Ŷt)
2 −min

β

T∑
t=1

(Yt − β′Xt)
2 ≤ O(log(T ))
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...
...

...
...

...
...

...
Yt Xt1 Xt2 Xt3

Ŷt

Xt4 β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Works no matter what the X ’s are.

Example: Use previous Xt,i = Ŷt−i . (F. and Stine 2021)

But we are going to go one better: Xt = Ŷt .
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Crazy calibration variable

Y X1 X2 X3 X4 β̂ Ŷ
Y1 X11 X12

X13

Ŷ1 X14 0 Ŷ1 = 0
Y2 X21 X22

X23

Ŷ2 X24 β̂1 Ŷ2 = β̂′
1X2

Y3 X31 X32

X33

Ŷ3 X34 β̂2 Ŷ3 = β̂′
2X3

Y4 X41 X42

X43

Ŷ4 X44 β̂3 Ŷ4 = β̂′
3X4

...
...

...
...

...
...

...
Yt Xt1 Xt2

Xt3

Ŷt Xt4 β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Theorem holds when one of the Xt ’s is Ŷt !
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Crazy calibration variable

Y X1 X2 X3 X4 β̂ Ŷ
Y1 X11 X12

X13

Ŷ1 X14 0 Ŷ1 = 0
Y2 X21 X22

X23

Ŷ2 X24 β̂1 Ŷ2 = β̂′
1X2

Y3 X31 X32

X33

Ŷ3 X34 β̂2 Ŷ3 = β̂′
2X3

Y4 X41 X42

X43

Ŷ4 X44 β̂3 Ŷ4 = β̂′
3X4

...
...

...
...

...
...

...
Yt Xt1 Xt2

Xt3

Ŷt Xt4 β̂t−1 Ŷt = β̂′
t−1Xt

Xt+1,1 Xt+1,2 Xt+1,3 Xt+1,4 Ŷt+1 = β̂′
tXt+1

Theorem ( =⇒ F. and Kakade 2008, F. and Hart 2018)

Adding the crazy calibration variable generates low macau:

(∀i)
T∑

t=1

Xt,i(Yt − Ŷt) = O(
√

T log(T ))
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Macau as the “normal equation”

E(Y |X ) Least squares Normal equations

Statistics min
β

∑
(Yi − β · Xi)

2
∑

Xi (Yi − β · Xi) = 0

Probability min
f

E
(
(Y − f (X )︸︷︷︸

aka E(Y |X)

)2)

online low regret low macau

The normal equation is the same as:

max
α

∑
i

α′Xi(Yi − β′Xi)) = 0

Which is solved by the β minimizer:

min
β

max
α

∑
i

α′Xi(Yi − β′Xi)) = 0
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Macau as the “normal equation”

E(Y |X ) Least squares Normal equations

Statistics min
β

∑
(Yi − β · Xi)

2 min
β

max
α

∑
α ·Xi (Yi − β · Xi)

Probability min
f

E
(
(Y − f (X )︸︷︷︸

aka E(Y |X)

)2) min
f

max
g

E
(

g(X ) (Y − f (X ))
)

online low regret low macau

Regret ≡
T∑

t=1

(Yt − Ŷt)
2 −min

β

T∑
t=1

(Yt − β · Xt)
2
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online low regret low macau

Macau ≡ max
α:|α|≤1

T∑
t=1

α · Xt

(
Yt − Ŷt

)
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online low regret low macau

statistics: Least squares ⇐⇒ normal equations
probability: Least squares ⇐⇒ normal equations
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Macau as the “normal equation”

E(Y |X ) Least squares Normal equations

Statistics min
β

∑
(Yi − β · Xi)

2 min
β

max
α

∑
α ·Xi (Yi − β · Xi)

Probability min
f

E
(
(Y − f (X )︸︷︷︸

aka E(Y |X)

)2) min
f

max
g

E
(

g(X ) (Y − f (X ))
)

online low regret low macau

Take Aways
on-line low regret ⇍⇒ on-line low macau
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low regret ⇍⇒ low macau

No regret 6=⇒ not falsified

t 1 2 3 4 · · · T-1 T T+1 T+2 T+3 · · · 3T
Yt 0 0 0 0 · · · 0 1 1 1 1 · · · 1
Xt 1 1 1 1 · · · 1 1 1 1 1 · · · 1
Ŷt 0 0 0 0 · · · 0 0 1

T
2

T+1
3

T+2 . . . 2
3

How about a bet?

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

no regret  ==/==>  not falsified

time

Y

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Not falsified 6=⇒ no regret

t 1 2 3 4 · · · T T+1 · · ·
Yt 0 1 0 1 · · · 0 1 · · ·
Xt 1 1 1 1 · · · 1 1 · · ·
Ŷt .6 .4 .6 .4 · · · .6 .4 · · ·

Macau is zero
Regret is T/9
So: low macau 6=⇒ low regret

(Skipping these proofs)
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Ŷt .6 .4 .6 .4 · · · .6 .4 · · ·

Macau is zero
Regret is T/9
So: low macau 6=⇒ low regret

(Skipping these proofs)
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Why is low macau useful?

C(a) =
T∑

t=1

ct(a) a∗ ≡ argmin
a

C(a)

Supposed each ct(·) is convex
Goal: play a to minimize C(a)
Eg: We could use SGD on ∇ct()
called “on-line convex optimization” with regret:

regret ≡
T∑

t=1

(ct(ât)− ct(a∗))

The regret is bounded by the gradient:

regret =
T∑

t=1

(ct(ât)− ct(a∗))

≤
T∑

t=1

(ât − a∗) · ∇ct(ât)

=
T∑

t=1

(ât − a∗) ·
(
∇ct(ât)− ∇̂ct(ât)

)
+ (ât − a∗) · ∇̂ct(ât)

regret ≤ macau
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(ât − a∗) · ∇ct(ât)

=
T∑

t=1

(ât − a∗) ·
(
∇ct(ât)− ∇̂ct(ât)

)
︸ ︷︷ ︸

(macau!)

+ (ât − a∗) · ∇̂ct(ât)︸ ︷︷ ︸
(zero @ ât )

regret ≤ macau
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Calibration Theorem

Theorem ( =⇒ F. and Kakade 2008, ⇐= new)

Let R be the quadratic regret of a forecast Ŷt against a linear
regression on Xt . Let M be the Macau of Ŷt using linear
functions of Xt to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xt ]0 = Ŷt ), then

R = o(T ) iff M = o(T ).
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Let R be the quadratic regret of a forecast Ŷt against a linear
regression on Xt . Let M be the Macau of Ŷt using linear
functions of Xt to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xt ]0 = Ŷt ), then

R = o(T ) iff M = o(T ).

Proof sketch: Consider the forecasts (1 − w)Ŷt + wα · Xt for
the any α. Let Q(w) be the total quadratic error of this family of
forecast. The following are equivalent:

Q(0) ≤ Q(w) (No regret condition)
Q′(0) is zero. (No macau condition)
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Calibration Theorem

Theorem ( =⇒ F. and Kakade 2008, ⇐= new)

Let R be the quadratic regret of a forecast Ŷt against a linear
regression on Xt . Let M be the Macau of Ŷt using linear
functions of Xt to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xt ]0 = Ŷt ), then

R = o(T ) iff M = o(T ).

Note: Typically, R = O(log(T )) iff M = Õ(
√

T ) for the actual
algorithms I know.
(S. Rakhlin and D. Foster have a proof for IID.)
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Recipe for good decisions

List bets that you would make to show ât is not optimal
Convert these to regression variables
Add the crazy-calibration variable
Run a low regret least squares algorithm
Make decision based on this forecast
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That is Macau

Take Aways
crazy-Calibration + low-regret ⇐⇒ low-macau =⇒ good decisions
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Second topic: Calibeating

Predicting the “grand average” is calibrated
But it is a crappy forecast.

We have lots of ways of generating good forecasts:
probabilistic models
Time series: ARIMA, etc
on-line least squares regression
Combining experts

None are guaranteed to be calibrated

Goal: Find a way to convert these good forecasts into
calibrated forecasts without removing their goodness.
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On-line Calibration

Recall our “good” by not calibrated forecast from the
introduction:

On sequence: 0 1 0 1 0 1 0 ...
The constant forecast of .5 is calibrated
The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

It has better fit: called “refinement.”
But, it isn’t calibrated.
Our goal: Keep this refinement, but make it calibrated
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Bias / Variance decomposition

bias:
β ≡ E(Y |Ŷ )− Ŷ

variance:
VAR = Var(Y − E(Y |Ŷ ))

Mean Squared error:

MSE = E(Y − Ŷ )2 = E(β2) + VAR

For binary sequences:
Bias is called Calibration
Variance is called Refinement
MSE is called Brier Score
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Brier score

“Conditional expectation”:

ρ(x) =
∑

t Yt Iŷt=x∑
Iŷt=x

Bias: β(x) = ρ(x)− x
Brier score / MSE:

BS =
1
T

T∑
t=1

(Yt − Ŷt)
2

Decomposition (MSE = bias + Variance):

1
T

T∑
t=1

(Yt − Ŷt)
2

︸ ︷︷ ︸
BS

=
1
T

T∑
(Ŷ − ρ(Ŷ ))2︸ ︷︷ ︸

Calibration

+
1
T

T∑
(Yt − ρ(Ŷt))

2︸ ︷︷ ︸
Refinement

20 / 35



Defining calibeating

Calibration is fixable after the fact.
But, can we fix it as we go along?
Start with a forecast ŷt

Calibration K (ŷ)
Refinement R(ŷ)

Find a new forecast ỹt that doesn’t pay the calibration costs of ŷ

Definition (Calibeating)

ỹ calibeats ŷ if:
BS(ỹ) ≤ R(ŷ).

ỹ keeps any patterns found by ŷ
ỹ doesn’t “pay” the calibration error
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Calibeating many forecasters

We can extend this to calibeating many forecasters.

Definition (Calibeating)

ỹ calibeats a collection of forecasts {ŷ1, . . . , ŷn} if for all i :

BS(ỹ) ≤ R(ŷ i).
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Calibeating is easy

Algorithm to calibeat a family of forecasts: ŷ i
t

Break up the interval [0,1] into small buckets Bj .
Intersect the buckets
Compute the average on each bucket

Theorem

The forecast combination ỹt will ϵ-calibeat ŷ i
t if we use buckets

with width less than ϵ.
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Calibeating is easy, but it can be calibeaten!

We can find ỹ that calibeats ŷ . But, there is no reason for ỹ to
be calibrated. So it can be calibeaten. The result likewise isn’t
calibrated, so it can be calibeaten.

This can go on ad infinitum
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Stopping the infinite regress

We can have Ct calibeat At and Bt .
Suppose at each time t we pick Bt = Ct .
Requires a fixed point computation
Ct calibeats At

Ct calibeats Ct :
BS(Ct) ≤ R(Ct)

So Ct is calibrated.

Theorem
For any set of forecasts, there is a combination forecast which
calibeats each element in the set, and is also calibrated.
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Freebie: Calibeating yourself is calibrated

If we use this theorem with an empty set then C is calibrated:

Corollary
If C calibeats itself, then C is calibrated.
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About fixed points

Suppose we will forecast Ct . The calibeating algorithm would
say we should instead forecast g(At ,Ct). If this happens to be
Ct , we are done. Ignoring At this means we want Ct = g(Ct).

Theorem (Outgoing distribution)

There exists a probability distribution on C such that:

E(|x − C|2 − |x − g(C)|2) ≤ δ2

for all x.

Proof is via the mini-max theorem (so linear programming can
find the answer.)

This means the BS of using C is better than the BS of
using the correct answer g(C).
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True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Proof is via the Brouwer’s fixed point. In fact, it is equivalent to
Brouwer’s fixed point theorem.
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True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Can create a deterministic “weak” calibration
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True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Using rounding, it can create a local random calibrated
forecast

Randomly round to nearest grid point
First few digits aren’t random, just the least significant one
Need this minimal amount of rounding to avoid impossibility
result mentioned this morning
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True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Fixed points are hard to find
Basically need to do exhaustive search at every time
period
CS people call complexity class PPAD
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Forms of calibeating

We’ve have four forms of calibeating:

simple Distribution local random deterministic
LS or

average
LP Fixed point Fixed point

calibrated
classic

calibration
Both classic
and weak

Weak

quadratic
safe

Not
quadratic

safe

quadratic
safe

quadratic
safe
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Final topic: Thoughts on what to calibrate
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Fairness and incentives

Consider predicts used for college admissions
We’ll call the prediction: SAT
We’ll call the Y variable: GPA

We are interested in fair incentives
The incentive story works better for employment,
But the names will be useful, so we’ll stick with college
admissions
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Regress Y on X or regression X on Y?

Basic discrimination:

E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)

Better off being orange
Richard Posner argued economics would drive it out
So it simply doesn’t exist due to “rationality”

But even if

E(GPA|blue, SAT=x) = E(GPA|orange, SAT=x)

we might have:

E(SAT|blue, skill=y) < E(SAT|orange, skill=y)

So still better off being Orange!
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Backwards regression

Traditional regression:

min
f

E
(
(Y − f (X ))2

)
Reverse regression:

min
g

E
(
(g(Y )− X )2

)
Even if f () and g() are linear, f ̸= g−1

(unless we have a perfect fit)
Called regression to the mean

33 / 35



No measurement of skill

We don’t have skill, but we do have GPA
So, regress SATs on GPAs and make that calibrated

Fair incentives
Economics won’t come to this solution with Laissez-faire
Needs government intervention (F. and Vohra, 1992)

Fairness then is best approximated by:

E(SAT|blue, GPA=y) ≈ E(SAT|orange, GPA=y)
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— (1991) “Prediction in the worst case.”
— and R. Vohra (1991-1998) “Asymptotic Calibration.”
— and R. Vohra (1992) “...Affirmative Action.”
— and S. Kakade “Deterministic calibration and Nash.”
— and S. Hart (2021) “...Leaky forecasts” (easier reading).
— and S. Hart (2022) “Calibeating.”
— and R. Stine (2021) “Martingales and forecasts.”

Dylan:
Dylan Foster and Sasha Rakhlin (2021) “SquareCB.”

Jürgen:
J. Forster (1999) “...Linear Regression.”
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1: Take Aways
crazy-Calibration + low-regret ⇐⇒ low-macau

2:

simple Distribution local random deterministic
LS or

average
LP Fixed point Fixed point

calibrated
classic

calibration
Both classic
and weak

Weak

3: Calibrate SATs given GPAs

Thanks!
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