

Macau, Calibeating and Fairness

Dean P. Foster

Statistics: Anything easily fixed isn't calibrated

Fix the obvious problems!

Game theory: Without incentives

Game theory: With incentives!

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated
 - But the forecast .1 .9 .1 .9 .1 .9 ... is pretty good!
 - Yes, it has better "refinement."
 - But, it isn't calibrated.

Calibration is achievable

Theorem

A calibrated forecast exists.

Calibration is achievable

Theorem

A calibrated forecast exists.

proof:

Apply mini-max theorem.

(Sergiu Hart-personal communications-1995)

Calibration is achievable

Theorem

A calibrated forecast exists.

Detailed proof:

- Game between the statistician and Nature.
- Fine the value of a $2^{2^{7}} \times 2^{2^{7}}$ matrix game.
- Happy game theorist, not so happy computational theorist.
- (Sergiu just wrote it up carefully-2023)

But that isn't what I'm going to tell you about today

But that isn't what I'm going to tell you about today

Instead: Three short talks

Which three talks

• First talk: Macau: Same as multi-calibration?

- First talk: Macau: Same as multi-calibration?
- Second talk: Calibeating: Also same as multi-calibration?

- First talk: Macau: Same as multi-calibration?
- Second talk: Calibeating: Also same as multi-calibration?
- Third talk: Some thoughts on fairness

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better definition of error
 - you falsify a forecast by betting against it
 - The amount it loses is its macau.

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better definition of error
 - you falsify a forecast by betting against it
 - The amount it loses is its macau.

Take Aways

crazy-Calibration + low-regret \implies low-macau \implies good decisions

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

•
$$(Y - \hat{Y})$$
 is a "fair" bet

B is amount bet

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

•
$$(Y - \hat{Y})$$
 is a "fair" bet

- B is amount bet
- How to avoid being proven wrong by:

$$E\left(B\left(Y-\hat{Y}
ight)
ight)$$

(Start with bet B)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

•
$$(Y - \hat{Y})$$
 is a "fair" bet

- B is amount bet
- How to avoid being proven wrong by:

$$\mathsf{Macau} \equiv \max_{|B| \leq 1} E\left(B\left(Y - \hat{Y}\right)\right)$$

(worry about worst bet)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

•
$$(Y - \hat{Y})$$
 is a "fair" bet

- B is amount bet
- How to avoid being proven wrong by:

$$\min_{\hat{Y}} \max_{|B| \leq 1} E\left(B\left(Y - \hat{Y}\right)\right)$$

(mini-max)

Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X_4
<i>Y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	<i>X</i> ₁₄
Y ₂	<i>X</i> ₂₁	X ₂₂	X ₂₃	X ₂₄
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	X ₃₃	<i>X</i> ₃₄
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	X ₄₃	<i>X</i> ₄₄
:	÷	÷	÷	÷
Y _t	X_{t1}	X_{t2}	<i>X</i> _{t3}	X_{t4}

Starting with our data that we observed up to time t

We can fit $\hat{\beta}_t$ on everything up to time t

 $\hat{\beta}_t \qquad \hat{Y}_{t+1} = \hat{\beta}'_t X_{t+1}$

From a new X_{t+1} we can compute \hat{Y}_{t+1}

Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X_4	\hat{eta}
<i>Y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	<i>X</i> ₁₄	0
Y ₂	<i>X</i> ₂₁	X ₂₂	X ₂₃	<i>X</i> ₂₄	$\hat{\beta}_1$
Y ₃	<i>X</i> ₃₁	X ₃₂	X ₃₃	<i>X</i> ₃₄	$\hat{\beta}_2$
Y ₄	<i>X</i> ₄₁	X ₄₂	<i>X</i> ₄₃	<i>X</i> ₄₄	$\hat{\beta}_3$
:	÷	÷	÷	•	:
Y _t	<i>X</i> _{<i>t</i>1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$

Looking at only the first part of the data, we can generate:

 $\hat{\beta}_0, \quad \hat{\beta}_1, \quad \hat{\beta}_2, \quad \hat{\beta}_3, \quad \hat{\beta}_4, \quad \dots, \quad \hat{\beta}_{t-1}$

Y	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
Y ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	<i>X</i> ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X ₂₂	X ₂₃	<i>X</i> ₂₄	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	X ₃₃	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{\beta}_2' X_3$
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	<i>X</i> ₄₃	<i>X</i> 44	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3^{\overline{\prime}} X_4$
:	÷	÷	÷	:	:	÷
Y _t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Each of these leads to a next round

 $\hat{Y}_1,\quad \hat{Y}_2,\quad \hat{Y}_3,\quad \hat{Y}_4,\quad \ldots,\quad \hat{Y}_t$

Y	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	<i>X</i> ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	<i>X</i> ₂₂	X ₂₃	<i>X</i> ₂₄	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}'_1 X_2$
Y ₃	<i>X</i> 31	<i>X</i> ₃₂	X ₃₃	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	<i>X</i> 43	<i>X</i> 44	$\hat{\beta}_3$	$\hat{Y}_4=\hat{eta}_3'X_4$
:	÷	÷	÷	÷	:	÷
Y _t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}_{t-1}' X_t$

Theorem (F. 1991, Forster 1999)

Such an on-line least squares forecast generates low regret:

$$\sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta' X_t)^2 \le O(\log(T))$$

Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	<i>X</i> ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X ₂₂	X ₂₃	<i>X</i> ₂₄	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}'_1 X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	X ₃₃	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	<i>X</i> 43	<i>X</i> 44	$\hat{\beta}_3$	$\hat{Y}_4=\hat{eta}_3'X_4$
:	÷	:	÷	:	:	:
Y _t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}_{t-1}' X_t$

Works no matter what the X's are.

Example: Use previous $X_{t,i} = \hat{Y}_{t-i}$. (*F. and Stine 2021*)

But we are going to go one better: $X_t = \hat{Y}_t$.

Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	\hat{eta}	Ŷ
Y ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	Ŷ ₁	<i>X</i> ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X ₂₂	Ŷ2	<i>X</i> ₂₄	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	X ₃₂	Ŷ ₃	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{\beta}_2' X_3$
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	\hat{Y}_4	<i>X</i> ₄₄	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3^{\overline{\prime}} X_4$
:	÷	÷	÷	÷	:	÷
Y _t	X_{t1}	X_{t2}	\hat{Y}_t	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem holds when one of the X_t 's is \hat{Y}_t !

Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	Ŷ ₁	<i>X</i> ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X ₂₂	Ŷ ₂	<i>X</i> ₂₄	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}'_1 X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	Ŷ ₃	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{\beta}_2' X_3$
Y ₄	<i>X</i> ₄₁	<i>X</i> ₄₂	\hat{Y}_4	<i>X</i> 44	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3^{\overline{\prime}} X_4$
:	:	÷	÷	÷	1 :	÷
Y _t	X_{t1}	<i>X</i> _{<i>t</i>2}	\hat{Y}_t	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}_{t-1}' X_t$

Theorem (\implies F. and Kakade 2008, F. and Hart 2018)

Adding the crazy calibration variable generates low macau:

$$(\forall i) \quad \sum_{t=1}^{T} X_{t,i}(Y_t - \hat{Y}_t) = O(\sqrt{T \log(T)})$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\sum X_i (Y_i - \beta \cdot X_i) = 0$

The normal equation is the same as:

$$\max_{\alpha} \sum_{i} \alpha' X_i (Y_i - \beta' X_i)) = 0$$

Which is solved by the β minimizer:

$$\min_{\beta} \max_{\alpha} \sum_{i} \alpha' X_i (Y_i - \beta' X_i)) = \mathbf{0}$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2)$	$(\forall g) \ E(g(X) \ (Y - f(X))) = 0$

The normal equation is the same as:

$$\max_{g} E\left(g(X)(Y-f(X))\right)=0$$

Which is solved by the $f(\cdot)$ minimizer:

$$\min_{f} \max_{g} E\left(g(X)(Y-f(X))\right) = 0$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2)$	$\min_{f} \max_{g} E\Big(g(X) \ (Y - f(X))\Big)$
E(Y X)	Least squares	Normal equations
-------------	--	--
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E\big((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2\big)$	$\min_{f} \max_{g} E\Big(g(X) \ (Y - f(X))\Big)$
online	low regret	low macau

$$Regret \equiv \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta \cdot X_t)^2$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E\big((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2\big)$	$\min_{f} \max_{g} E\Big(g(X) \ (Y - f(X))\Big)$
online	low regret	low macau

$$Macau \equiv \max_{\alpha:|\alpha| \leq 1} \sum_{t=1}^{T} \alpha \cdot X_t \left(Y_t - \hat{Y}_t \right)$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2)$	$\min_{f} \max_{g} E\Big(g(X) \ (Y - f(X))\Big)$
online	low regret	low macau

- statistics: Least squares \iff normal equations
- probability: Least squares \iff normal equations

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum \left(Y_i - \beta \cdot X_i \right)^2$	$\min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E\big((Y - \underbrace{f(X)}_{aka \ E(Y X)})^2\big)$	$\min_{f} \max_{g} E\Big(g(X) \ (Y - f(X))\Big)$
online	low regret	low macau

low regret \iff low macau

No regret \Rightarrow not falsified

t	1	2	3	4	 T-1	т	T+1	T+2	T+3	 ЗT
Y_t	0	0	0	0	 0	1	1	1	1	 1
Xt	1	1	1	1	 1	1	1	1	1	 1
Ŷţ	0	0	0	0	 0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 23

How about a bet?

Not falsified \Rightarrow no regret

t	1	2	3	4	 т	T+1	
Y_t	0	1	0	1	 0	1	
Xt	1	1	1	1	 1	1	
Ŷţ	.6	.4	.6	.4	 .6	.4	

Macau is zero

Regret is T/9

So: low macau ⇒ low regret

low regret \iff low macau

N	0	rea	ret	\Rightarrow	not	fal	sif	iec	
	.0	ug	101	77	1101	iu	011	100	

t	1	2	з	4	 T-1	Т	T+1	T+2	T+3	 ЗT
Y_t	0	0	0	0	 0	1	1	1	1	 1
Xt	1	1	1	1	 1	1	1	1	1	 1
Ŷţ	0	0	0	0	 0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 2

How about a bet?

Not falsified \Rightarrow no regret

t	1	2	3	4	 т	T+1	
Y_t	0	1	0	1	 0	1	
Xt	1	1	1	1	 1	1	
Ŷţ	.6	.4	.6	.4	 .6	.4	

Macau is zero

Regret is T/9

So: low macau ⇒ low regret

(Skipping these proofs)

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_a C(a)$

- Supposed each $c_t(\cdot)$ is convex
- Goal: play *a* to minimize *C*(*a*)
- Eg: We could use SGD on $\nabla c_t()$
- called "on-line convex optimization" with regret:

regret
$$\equiv \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_a C(a)$

regret =
$$\sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

 $\leq \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t)$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_a C(a)$

$$\begin{array}{ll} \text{regret} &=& \displaystyle\sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*)) \\ &\leq& \displaystyle\sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ &=& \displaystyle\sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \end{array}$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_a C(a)$

regret =
$$\sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$\leq \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t)$$

$$= \underbrace{\sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot (\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t))}_{(macau!)} + (\hat{a}_t - a^*) \cdot \underbrace{\widehat{\nabla c_t}(\hat{a}_t)}_{(zero @ \hat{a}_t)}$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_a C(a)$

$$\begin{array}{lll} \operatorname{regret} & = & \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*)) \\ & \leq & \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ & = & \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \\ & \operatorname{regret} & \leq & \operatorname{macau} \end{array}$$

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Proof sketch: Consider the forecasts $(1 - w)\hat{Y}_t + w\alpha \cdot X_t$ for the *any* α . Let Q(w) be the total quadratic error of this family of forecast. The following are equivalent:

- $Q(0) \leq Q(w)$ (No regret condition)
- Q'(0) is zero. (No macau condition)

Theorem (\implies F. and Kakade 2008, \iff new)

Let *R* be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let *M* be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Note: Typically, $R = O(\log(T))$ iff $M = \tilde{O}(\sqrt{T})$ for the actual algorithms I know.

(S. Rakhlin and D. Foster have a proof for IID.)

- List bets that you would make to show â_t is not optimal
- Convert these to regression variables
- Add the crazy-calibration variable
- Run a low regret least squares algorithm
- Make decision based on this forecast

Take Aways

 $crazy-Calibration + low-regret \iff low-macau \implies good decisions$

- Predicting the "grand average" is calibrated
 - But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
 - probabilistic models
 - Time series: ARIMA, etc
 - on-line least squares regression
 - Combining experts
- None are guaranteed to be calibrated

- Predicting the "grand average" is calibrated
 - But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
 - probabilistic models
 - Time series: ARIMA, etc
 - on-line least squares regression
 - Combining experts
- None are guaranteed to be calibrated

Goal: Find a way to convert these good forecasts into calibrated forecasts without removing their goodness.

Recall our "good" by not calibrated forecast from the introduction:

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated
 - It has better fit: called "refinement."
 - But, it isn't calibrated.
 - Our goal: Keep this refinement, but make it calibrated

Bias / Variance decomposition

bias:

$$\beta \equiv \boldsymbol{E}(\boldsymbol{Y}|\hat{\boldsymbol{Y}}) - \hat{\boldsymbol{Y}}$$

variance:

$$VAR = Var(Y - E(Y|\hat{Y}))$$

Mean Squared error:

$$MSE = E(Y - \hat{Y})^2 = E(\beta^2) + VAR$$

- For binary sequences:
 - Bias is called Calibration
 - Variance is called *Refinement*
 - MSE is called Brier Score

Brier score

• "Conditional expectation":

$$\rho(\mathbf{x}) = \frac{\sum_{t} Y_t I_{\hat{y}_t = \mathbf{x}}}{\sum I_{\hat{y}_t = \mathbf{x}}}$$

- Bias: $\beta(x) = \rho(x) x$
- Brier score / MSE:

$$BS = \frac{1}{T} \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2$$

Decomposition (MSE = bias + Variance):

Calibration is fixable after the fact.

- But, can we fix it as we go along?
- Start with a forecast ŷ_t
- Calibration $K(\hat{y})$
- Refinement $R(\hat{y})$

Find a new forecast \tilde{y}_t that doesn't pay the calibration costs of \hat{y}

Definition (Calibeating)

```
\tilde{y} calibeats \hat{y} if:
```

 $\mathsf{BS}(\tilde{y}) \leq R(\hat{y}).$

- \tilde{y} keeps any patterns found by \hat{y}
- \tilde{y} doesn't "pay" the calibration error

We can extend this to calibeating many forecasters.

Definition (Calibeating)

 \tilde{y} calibeats a collection of forecasts $\{\hat{y}^1, \dots, \hat{y}^n\}$ if for all *i*:

 $\mathsf{BS}(\tilde{y}) \leq R(\hat{y}^i).$

• Algorithm to calibeat a family of forecasts: \hat{y}_t^i

- Break up the interval [0, 1] into small buckets B_j.
- Intersect the buckets
- Compute the average on each bucket

Theorem

The forecast combination \tilde{y}_t will ϵ -calibeat \hat{y}_t^i if we use buckets with width less than ϵ .

We can find \tilde{y} that calibeats \hat{y} . But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

We can find \tilde{y} that calibeats \hat{y} . But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

This can go on ad infinitum

We can have C_t calibeat A_t and B_t .

- Suppose at each time *t* we pick $B_t = C_t$.
- Requires a fixed point computation
- C_t calibeats A_t
- C_t calibeats C_t :

$$BS(C_t) \leq R(C_t)$$

So C_t is calibrated.

Theorem

For any set of forecasts, there is a combination forecast which calibeats each element in the set, and is also calibrated.

If we use this theorem with an empty set then *C* is calibrated:

Corollary

If C calibeats itself, then C is calibrated.

Suppose we will forecast C_t . The calibeating algorithm would say we should instead forecast $g(A_t, C_t)$. If this happens to be C_t , we are done. Ignoring A_t this means we want $C_t = g(C_t)$. Suppose we will forecast C_t . The calibeating algorithm would say we should instead forecast $g(A_t, C_t)$. If this happens to be C_t , we are done. Ignoring A_t this means we want $C_t = g(C_t)$.

Theorem (Outgoing distribution)

There exists a probability distribution on C such that:

$$E(|x-C|^2-|x-g(C)|^2) \leq \delta^2$$

for all x.

Proof is via the mini-max theorem (so linear programming can find the answer.)

• This means the BS of using *C* is better than the BS of using the correct answer *g*(*C*).

For any smooth g() and any closed convex set S, there exists a point $C \in S$ such that:

$$E(|x-C|^2-|x-g(C)|^2) \leq 0$$

for all $x \in S$.

Proof is via the Brouwer's fixed point. In fact, it is equivalent to Brouwer's fixed point theorem.

For any smooth g() and any closed convex set S, there exists a point $C \in S$ such that:

$$E(|x - C|^2 - |x - g(C)|^2) \le 0$$

for all $x \in S$.

• Can create a deterministic "weak" calibration

For any smooth g() and any closed convex set S, there exists a point $C \in S$ such that:

$$E(|x - C|^2 - |x - g(C)|^2) \le 0$$

for all $x \in S$.

- Using rounding, it can create a local random calibrated forecast
 - Randomly round to nearest grid point
 - First few digits aren't random, just the least significant one
 - Need this minimal amount of rounding to avoid impossibility result mentioned this morning

For any smooth g() and any closed convex set S, there exists a point $C \in S$ such that:

$$E(|x - C|^2 - |x - g(C)|^2) \le 0$$

for all $x \in S$.

- Fixed points are hard to find
- Basically need to do exhaustive search at every time period
- CS people call complexity class PPAD

We've have four forms of calibeating:

simple	Distribution	local random	deterministic		
LS or	IP	Fixed point	Fixed point		
average	LI	r ixed point	Fixed point		
adlibrated	classic	Both classic	Weak		
calibrated	calibration	and weak	vveak		
quadratic safe	Not quadratic safe	quadratic safe	quadratic safe		

Final topic: Thoughts on what to calibrate
Consider predicts used for college admissions

- We'll call the prediction: SAT
- We'll call the Y variable: GPA
- We are interested in fair incentives
 - The incentive story works better for employment,
 - But the names will be useful, so we'll stick with college admissions

Regress *Y* on *X* or regression *X* on *Y*?

Basic discrimination:

E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"

Regress *Y* on *X* or regression *X* on *Y*?

• Basic discrimination:

E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"
- But even if

$$E(GPA|blue, SAT=x) = E(GPA|orange, SAT=x)$$

we might have:

E(SAT|blue, skill=y) < E(SAT|orange, skill=y)

• So still better off being Orange!

Backwards regression

• Traditional regression:

$$\min_{f} E\left((Y-f(X))^2\right)$$

• Reverse regression:

$$\min_{g} E\left((g(Y)-X)^2\right)$$

- Even if f() and g() are linear, $f \neq g^{-1}$
- (unless we have a perfect fit)
- Called regression to the mean

No measurement of skill

- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
 - Fair incentives
 - Economics won't come to this solution with Laissez-faire
 - Needs government intervention (F. and Vohra, 1992)

No measurement of skill

- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
 - Fair incentives
 - Economics won't come to this solution with Laissez-faire
 - Needs government intervention (F. and Vohra, 1992)
- Fairness then is best approximated by:

 $E(SAT|blue, GPA=y) \approx E(SAT|orange, GPA=y)$

Me:

- — (1991) "Prediction in the worst case."
- — and R. Vohra (1991-1998) "Asymptotic Calibration."
- — and R. Vohra (1992) "...Affirmative Action."
- and S. Kakade "<u>Deterministic calibration and Nash</u>."
- — and S. Hart (2021) "...Leaky forecasts" (easier reading).
- — and S. Hart (2022) "Calibeating."
- and R. Stine (2021) "Martingales and forecasts."

Dylan:

• Dylan Foster and Sasha Rakhlin (2021) "SquareCB." Jürgen:

• J. Forster (1999) "...Linear Regression."

1:

Take Aways

crazy-Calibration + low-regret <--> low-macau

2:	simple	Distribution	local random	deterministic
	LS or average	LP	Fixed point	Fixed point
	calibrated	classic calibration	Both classic and weak	Weak

1:

Take Aways

crazy-Calibration + low-regret \iff low-macau

2:	simple	Distribution	local random	deterministic
	LS or average	LP	Fixed point	Fixed point
	calibrated	classic calibration	Both classic and weak	Weak

3: Calibrate SATs given GPAs

1:

Take Aways

crazy-Calibration + low-regret \iff low-macau

2:	simple	Distribution	local random	deterministic
	LS or average	LP	Fixed point	Fixed point
	calibrated	classic calibration	Both classic and weak	Weak

3: Calibrate SATs given GPAs

Thanks!