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Abstract

It is widely known that conditional covariances of asset returns change over time.
Researchers doing empirical work have adopted many strategies for accommodating con-
ditional heteroskedasticity. Among the popular strategies are: (a) chopping the available
data into short blocks of time and assuming homoskedasticity within the blocks, (b)
performing one-sided rolling regressions, in which only data from, say, the preceding five
year period is used to estimate the conditional covariance of returns at a given date,
and (c) performing two-sided rolling regressions, in which covariances are estimated
for each date using, say, five years of lags and five years of leads. Another model-
GARCH-amounts to a one-sided weighted rolling regression. We develop continuous
record asymptotic approximations for the measurement error in conditional variances
and covariances when using these methods. We derive asymptotically optimal window
lengths for standard rolling regressions and optimal weights for weighted rolling regres-
sions. As an empirical example, we estimate volatility on the S&P 500 stock index using
daily data from 1928 to 1990.
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1 Introduction

Most asset pricing theories relate expected returns on assets to their conditional variances
and covariances. See, for example, the review of the ARCH literature in Bollerslev, Chou,
and Kroner (1992). It is widely recognized that these conditional moments change over
time. Unfortunately, conditional covariances are not directly observable, so in tests of asset
pricing theories researchers must use estimates of conditional second moments. Similarly,
market participants use estimates of conditional variances and covariances in hedging, option
pricing, and in many other aspects of portfolio selection. How accurate are these estimated
variances and covariances? How can they be estimated more accurately?

If conditional variances and covariances were constant over time, then standard statisti-
cal techniques would yield the answer to these questions. When conditional heteroskedas-
ticity is present, these techniques will not suffice. In fact, as we see in Section 2 below,
statistical methods that assume constant variances and covariances even over short time
intervals present a misleadingly optimistic picture of how accurate the measurement is.

Though there are many strategies for estimating time-varying variances and covariances,
among the most popular have been (a) chopping the returns data into blocks of time and
treating conditional variances and covariances as constant within each block (e.g., Merton
(1980), Poterba and Summers (1986), French, Schwert, and Stambaugh (1987)), and (b)
the rolling regression approach of Officer (1973) and Fama and MacBeth (1973).

The appeal of such strategies is clear: on the one hand, they allow for the possibility
(almost a certainty in economic applications!) that the parameters of the process evolve
randomly over time. On the other hand, they impose little structure on the precise way
in which the parameters evolve. All of these strategies accommodate random evolution in
parameters by estimating the value of the parameters at time ¢ using only data “near” t.
For example, Fama and MacBeth (1973) estimated conditional betas at date ¢ using only
the returns data for a period of five to eight years prior to date t—a “rolling regression.”!

As Fama and MacBeth explain it, this estimation strategy “reflects a desire to balance
the statistical power obtained with a large sample from a stationary process against potential

problems caused by any non-constancy of the 3;.” The more important “the statistical

!These estimation strategies are also popular on Wall Street: see, for example, the Merrill Lynch (1986)
beta book, which uses a five-year rolling regression with monthly data to estimate betas. Rolling regressions
are also used in estimating conditional means (see, for example, Banerjee, Lumsdaine, and Stock (1991)),

although our results do not apply directly to this case.



power obtained with a large sample” is, the more inclined a researcher should be to use a
long string of data in the rolling regression. On the other hand, minimizing the “potential
problems caused by any non-constancy of the 3;” points toward using a short period for the
rolling regression.

Fama and MacBeth’s choice of a 5-7 year window was motivated by the work of Fisher
(1970) and Gonedes (1973), who found that this window length gave the best out-of-sample
forecasting performance for individual stocks. In related work, Fisher (1970), and Fisher
and Kamin (1985) develop approximate distributions for measurement errors in betas and
optimal weighting schemes under the assumption that conditional betas are random walks
independent of market returns.?

In this paper, we extend these theoretical results to a much broader class of data gen-
erating processes. In Section II we show how, under weak assumptions, to approximate
the distribution of measurement errors in estimated conditional variances and covariances.
These results are broad enough to accommodate not only one and two-sided rolling re-
gressions, but also more general weighting schemes such as the ARCH(p) model of Engle
(1982) and one of the multivariate extensions proposed by Bollerslev, Engle, and Wooldridge
(1988).% In Section 3, we characterize optimal window lengths and optimal weights to use
in rolling regressions. Section 4 considers estimation of conditional betas. In Section 5, we
provide an empirical example. Section 6 is a brief conclusion. The proofs are collected in

the Appendix.

2 Asymptotic distributions

To illustrate the intuition behind our approximation method, consider the following simple

case; suppose the data are generated by the diffusion

dX: = Xy, 00)dt + oy - dWyy (1)
dof = N Xi,a0)dt + A(Xy,00) - dWa 2)

*There is a large literature on random coefficient regression, of which the work of Fisher (1970) and

Fisher and Kamin (1985) is an application. See, for example, Chow (1984) and the references therein.
? Asymptotic measurement error distributions for conditional variances generated by other ARCH models

which cannot be accommodated by the methods in this paper) are given in Nelson and Foster (1994), Nelson
g
(1994).



where Wy ; and Wy are (possibly correlated) standard Brownian motions, X; and Utz are
scalars, and A(-,-), A(+,-,-), and u(-,-,-) are continuous, with A(-,-) strictly positive.

Our assumption that A(-,-) is strictly positive separates our approach from that of the
non-parametric liturature.

Suppose that the {X;} process is observable but {¢?} is not. How can we use the
information in the sample path of {X;} to estimate the path of {o?}? It is well known that
as a diffusion is observed at finer and finer time intervals (say of length h), its conditional
variance at any instant can be approximated with ever greater accuracy, until in the limit
as h — 0, it is known exactly. To understand why, note first that because o7 in (1)-(2) is
generated by a diffusion, it is continuous (with probability one) as a function of time. This
implies that for every € > 0 and every ¢ > 0 there exists, with probability one, a random
6(t) > 0 such that

sup |02 — o] < e (3)

1—6(t)<s<t
That is, over suitably small time intervals, the change in ¢? can be made as small as we
like. Now choose a small constant § > 0 and chop the interval [t — §,t] into M equal pieces.

We then estimate o2 by

M
GH6, M) = 67" (Xy—(jonysym — Ximjsym)’ (4)
i=1
(4) is a standard one-sided rolling regression in which we act as if y; were identically zero.
When § is small, yu; and o? are effectively constant, so when we condition on p;_s and
o? s, the normalized increments (M/6)1/2[Xt_(]‘_1)5/M — X;_js/m] are approximately i.i.d.
N(0,0% ;). Under suitable moment conditions, the tails of these normalized increments
are well-behaved (i.e., not too thick), allowing us to apply a law of large numbers yielding
[62(8, M) — 0] — 0 in probability as § — 0 and M — oo. Failing to correct for the non-
zero drifts in X; and o? does not interfere with consistency—the effect of the drift terms on
67(6, M) vanishes as M — oo and § — 0.

Though quite a special case, (1)—(4) illustrate the basic intuition underlying our results:
as M — oo and 6§ — 0, the normalized increments in X; become approximately i.i.d. with
zero conditional mean, finite conditional variance, and sufficiently thin tails, allowing us
to apply a law of large numbers to estimate 0. As we see below, it is possible-in a far
more general setting—to apply a central limit theorem to develop an asymptotic normal

distribution for the measurement error [62(8, M) — o?].



We will now introduce the notation need for our theorems. For each h > 0, consider a
random vector step function , X; € R* which makes jumps only at times 0, h, 2k, and so on.
Assume that , X is a random process with an (almost surely) finite conditional covariance
matrix. Formally, , X; is a locally square integrable semimartingale— see e.g., Jacod and
Shiryaev (1987) chapters 1 — 2. We take , X, to be adapted to the filtration {,F;} where
{nF:} is increasing and right continuous. ,X; € R can be decomposed into a “predictable”

part and a martingale part, i.e., the Doob-Meyer decomposition.
WAX, =3, X, — 1 Xoop = pprh + (W Moy, — m M) = ppi- AT + AR M,

where s € RF is , Fis measurable, and Ay M, € RF is a local martingale difference array
with an (almost surely) finite conditional covariance matrix. Further, to make our sums
look like integrals, we set A7 = h, and Ay M, = , M, — , M, _.

The conditional covariance matrix of ;AX, per unit of time is the & X k matrix ,Q, =

[1(i5)7)- In other words,
EGAM, -, AMT |, F. 1) = 1Q,AT.

182 is . F,_; measurable.
Our interest is in estimating ,€2; when it randomly evolves over time. Just as the change
in , X, can be decomposed into a drift component (i.e., a component that is predictable

one step ahead) and a martingale component, so, we assume, can the change in ;,;:
AR = b AAT + hAM:

where ,A;, the instantaneous drift in ;,Q;, is ,F;_gp measurable, and ,M* is a k X k

matrix-valued local martingale with respect to the filtration ,F,_p. Further,
E(RAMy, - hAM Gy nFr—2n) = kA ijeny AT

So p A, is pF,_9n measurable. ,A; and p A, are, respectively, the drift and variance per unit
of time in the conditional variance process ;. Since £} is a k X k matrix, its drift , A,
is as well. The “variance of the variance” process A; is a k X k X k X k tensor. As we see
below, the more variable the ;€; process is (as measured by ;,A;) the less accurately it can
be measured.

The class of data generating processes encompassed in this setup is very large, including,

for example, discrete time stochastic volatility models (e.g., Melino and Turnbull (1990)),



diffusions observed at discrete intervals of length h, (e.g., Wiggins (1987), Hull and White
(1987)), ARCH models, (e.g., Bollerslev, Chou and Kroner (1990)) and many random co-
efficient models (Chow (1984)).

As is well known for standard regressions, the efficiency of least squares covariance
matrix estimates depends to a considerable extent on tail thickness of the noise terms (see,
e.g., Davidian and Carroll (1987)). This is true for rolling regressions as well. To motivate
our next bit of notation, suppose for the moment that the A, X,’s were i.i.d., scalar draws
from a distribution with mean zero and variance 2. If we estimate € using T’ observations by
Q=171 ZT: (A, X;)?, the variance of Q is T~ Var[(A, X;)?]. That is, the sample variance

=1
of ! depends on the fourth moments of the ApX/s. When 1, randomly evolves over time,

we require an analogous measure of the conditional tail thickness of Ay X;. Accordingly, we

define 1, B;, a k x k matrix-valued martingale by the following martingale difference array:*
WAB, = b= 2(LAM, -, AMT — ,Q, AT).

nB; is essentially an empirical second moment process with its conditional mean removed
each period to make it a martingale. We next define the conditional variance process for

nB;, the k X k x k x k tensor process ;0. with
Wik AT = E(hABGj); - hABriyr [nFr—h)-
O(ijk1)e is closely related to the multivariate conditional fourth moment of Ay M;:
Oiiiie = El(AX e = npti - ) = 1 Q0w Fi-r]
= E[ARM — w%iyelnFion]-

h

O(iiii)T/Q%ﬁ)T is the conditional coefficient of kurtosis less one of the i1 variable at time 7.

If AX;; is conditionally normal, then (), = 29(22'2')7'

We next define

PGkl = ort(An By, AnM Gy —arnFr-n)-

*The reason for the A~'/? in the definition of B is to keep nB = Oy(1). Thus, the notation will remind
us the size of various integrals. In other words, for M and M™, we have the usual “size” condition that

RAM? = O(Ar), and L AM*® = O(Ar), and now this also holds for the B process: hAB? = L,0AT = O(AT).



npe 18 the conditional correlation between the innovations in the empirical second moment
process B, and the innovations in the conditional variance process €),. The behavior of
hP(ijkl)- 1s an important determinant of our ability to measure 1€y accurately. To see why,
suppose that €}, is generated by a diagonal multivariate GARCH model as in Bollerslev,
Engle, and Wooldridge (1988). In this case 5, equals a distributed lag of the outer product
of residual vectors and therefore ;p(;;;y, = 1. In this case, rolling regressions can estimate
#§); arbitrarily well, since Ap€Q; is perfectly correlated with elements of AhXtAhXtT. Le.,
when we see Ay X; this tells us all we need to know about the change in ,€;. On the other
hand, suppose that ;€; is generated by a diffusion observable at intervals of length h. In
this case pp(;jre = 0, and though ALX:Ap X[ contains information about the level ,Q, it
in general contains no information about changes in ,{};. The case where pp < 0 is a sort
of “reverse GARCH?” case, in which larger than expected residuals cause variance to drop.
Our results are able to accommodate this case, though it seems unlikely to be practically
relevant. In general, however, the higher |hp(ijkl)t|7 the more accurately measurable is
r(ij)t- Unfortunately, we will have to assume a value for p because we will see that it is
not identifiable.

The estimator we will study is

KT = Y 80 -1 RAX iy = b nlay BAX (Gyr = B iy (5)

h h

where pfi is a estimate of pu, and ;) is the ijt component of ,{, pfi(; is the it
component of i, and pw-_7 is a k X k weighting matrix for which > pw(;)-—1)AT = 1.
For now both the conditional mean estimate ,fi; and the weights pw(;); as exogenously
given, though below we consider data-dependent selection of ,w;;y;.

A special case of the above is the standard flat—weight rolling regression motivated by the
following argument. E(AM)?/At =, so it seems reasonable that if we average terms like
AMQ/AT, we should get a good approximation to €. So, the rolling regression estimator
of 1 is defined as:

) r=T4(m—-1)h

WQr = [(n+m)h] ™ S AX, = b [ AX — hyfie]”
7=T—-nh

Thus the weights are equal over some region. So,

—L _—  _ph <7< mh
W) = { S (6)

0 otherwise



So, for example, when n = m = kh~'/? for some constant k, (which when p = 0 will
turn out to be the asymptotically optimal way of choosing a rolling regression) we see that
pws_7 = h712E= near T, and 0 far away from T', with > wA7 = 1. Here m is the number
of leads and n is the number of lags. In a standard one-sided rolling regression, m is set
equal to zero and pw(;j)—1 = 1/nh for T —nh <t < T and zero otherwise.

When m = 0 and the weights are non-negative but otherwise unconstrained in (5), we
have a special case of the multivariate GARCH model of Bollerslev, Engle, and Wooldridge
(1988). The method of treating conditional covariances as constant over blocks of time (e.g.,
Merton (1980), Poterba and Summers (1986), French, Schwert, and Stambaugh (1987)) is
also easily accommodated: here w = 1/hK whenever ¢t — T' is in the same time block as

time T and equals zero otherwise. K is the number of observations within the block.

2.1 Assumptions

The first assumption requires the first few conditional moments of , X; and ,{; remain
bounded with small changes over small time intervals as h — 0: This assumption essentially

allows us to apply the central limit theorem locally in time.

Assumption A The following 8 expressions are all O,(1):

(i) sup fis — pue ;
S,tE[T,T-I—hl/2] (UZ) hAT
(ii) sup  [a Ay — n A7 (vii) for some € > 0,
te[T, T+h1/2] _1/2 . 124e
(iii) AT E (Ih hAMr| fT_zh)
(iv) 10 (viii) for some € > 0,
h3LT
(v) 107 B (1A Br P\ Fro).

Assumption A is not as formidable as its 8 parts appear. For example, if all these
processes are actually continuous semi-martingales, then Assumption A will hold with only
non-explosiveness conditions. This is made precise in the following definition and following

restatement of Assumption A.

Definition We will call , X, a discretized continuous semi-martingale if there exists a pro-

cess o X ,, such that , X;n = o Xip and o X, is a continuous semi-martingale with differential



representation of do X, = o,quT—l—()QyzdoWT, where both g, and o), are continuous semi-
martingales with Q positive definite [a.s]. Further, doQ; = oA;dT + oA doW., where both
oAr and oA, are continuous semi-martingales, and W, and W' are multivariate Brownian

motions.

Assumption (A’) , X, is a discretized continuous semi-martingale for which there exists
a random variable M with finite mean such that for all™ < K (K finite) the following holds
[almost surely]: |opr| 4 02| + |007] + oA+ + |oAs| < M. Also assume i, = 0.

From standard arguments Assumption A’ can be shown to imply Assumption A. Thus,
we see that Assumption A is more of a regularity condition rather than a restrictive as-

sumption.

Assumption B 6., ,A, and pp; change slowly over time. That is to say

sup |h0- —nfr| = o0,(1),
T<r<T+h1/2
sup |hAT - hAT| = Op(1)7 and
T<r<T+h1/2
sup Pk nPGiyTl = 0p(1).

T<r<T+h1/?

Assumption B tells us that the “hyper-parameters” are regular enough that they can

be estimated. Again this isn’t a very restrictive assumption in the sense that these terms

would naturally be Op(hl/Q) if 8, A, and p followed SDEs.

Assumption C The diagonal elements of 1,0, and A, are non-vanishing. That is to say

Vi Vi 1/ w8 50 = Op(1), and 1/pA 5557 = Op(1).

Assumption C tells us that we can get a non-degenerate asymptotic distribution at
the natural rate of convergence. If assumption C were dropped, our asymptotic variance
calculation would still hold. But the results might be trivial in the sense that we get an
asymptotic normal with zero variance. Assumption C avoids this.

Ribts bfte, and Ay drop out of the asymptotic distribution of the measurement error in the
conditional covariance estimate produced by the rolling regression—i.e., these terms are of
only second order importance in determining the measurement error. In fact, if we explode
Ribts pfte, and pAsto infinity as h — 0 at a sufliciently slow rate, these conditional moments

still drop out of the asymptotic distribution of the measurement error.



Definition ;1.and ;T are the “start” and “end” times of the rolling regression. That

means pw,_7 =0 for 7 < Ty or 7 > T,

Note it is not required that pw,_7 be non-zero between T, and T*. This will be useful
when considering two different weights. 7T, will then typically be the earlier of the starting
times and T the later of the ending times. The next assumption restricts the behavior of

the weights pw,_7:
Assumption D

hT* _ hT* — O(hl/Q)7
Z hW(ij)r—TAT = 1, and

=T, Tath,...
SEP(|hw(ij)T|) = O(h™'/3).

Assumption D requires that the total number of lags and leads used in the rolling
regression is going to infinity at rate h~1/2, though the time interval over which the weights
are nonzero is shrinking to 0 at rate h'/2. Assumption A guarantees that changes in €
are small over small time intervals: As in the illustration at the beginning of this section,
as h — 0 the rolling regression generates its conditional covariance estimate ;{}; using
a growing number of residuals generated over a shrinking period of time. Unfortunately,
however, Assumption D also requires that the number of residuals assigned nonzero weights
is bounded for each h. This accommodates the ARCH(p) model of Engle (1982) with p
growing at rate h=1/2 as h — 0, but formally excludes the GARCH(p,q) model of Bollerslev
(1986). We can, however, approzimate GARCH models to arbitrary accuracy by considering
ARCH(p) models for arbitrarily large but finite (for each h) order.

Typically w;;),—r > 0but this is not required. Assumption D also requires > w(;;),_7AT =
1. Interpreting the rolling regression as a multivariate GARCH model, this corresponds to
an IGARCH (“Integrated GARCH”) model- see Engle and Bollerslev (1986). For the the-
orems we can relax this condition to only assume that > wg;),—rA7 = 1+ 0(h1/4). For

intuition on why IGARCH is approached as h — 0, see Nelson (1992).

Definition
Z hW(j) AT if x>0
h\IJ(Z])gg = T:x—l—g?,x—l—?h...
— Z hw(ij)q—AT if x <0

10



Note: , ¥, is only defined if 2 /h is an integer. This is like an integral of ,w; in the sense
that AV(z)/Az = —pw,. For example, in the case of the flat weight rolling regression for
a univariate process

(hT™ = s)Ls>r — (s — W T )ls<r
R T — T ’

pVer =

where ,T* is the right end point of the rolling regression and ;7 is the left end point.

Define the following sums,
WSww = BYEY pwiAr
RSy = h_l/ZTZ:h\IJZAT
I Zth'h\I’TAT

In the multivariate case, w- is replaced by w,(;;). 50, pSwwis k& X k X kXxk. So, these sums
are actually tensors. For example 5w, w,, = > ; rw0r (i) Y () AT.

Finally, define the normalized measurement error process
Q) = h_1/4(th — 1)

Its conditional covariances are asymptotically the k x k X k X k tensor process (', with

elements given by

OGN = hSwiw - BOGkne T RS0 0 - R AGGEn e T

+ 1w, 0, - hp(ijkl)t\/he(ijij)t “h A gkt +

+ 1wy v, - hp(klij)t\/he(klkl)t “h(ijijye

Which in the scalar case is just (where the ‘»” has been deleted from C,0, A, p, ¥, and 9)

Cy = Swwle + 250w pe VO A + Swu Ay (7)

2.2 Main Convergence Theorems

Theorem 1 (Representation:) If Assumptions A & D hold, then

nQ )T WG Qe = 12057

WYY pwern ABGgy + Y W AMG) 4 0p(1)

11



Theorem 2 (Asymptotic Distribution:) If Assumptions A-D hold, then
wQT|Fr, is asymptotically distributed N(0,,CT,). (8)

PROOFS: See the Appendix.

The matrix normal distribution in Theorem 2 has the obvious interpretation —i.e., the
asymptotic covariance of ,Q ;) and 10y, given Fr,is Cpjryr,. Alternatively, using an
appropriate sense of a tensor square-root, equation (8) says, c-12Q D N(0,1) where 1
is the tensor identity.

To illustrate the application of Theorem 2, consider a multivariate rolling regression with

—1/2 —1/2 This is a restricted form

flat weights. Assume that ,n;; = noh , and pmi; = moh
of a rolling regression in which all of the windows are the same size. For all i and j the same
weighting is then used. In other words, jw, = hl/z(no + mo) H {7 € [—nohl/z,mohl/z]}.
Thus, Assumption D is satisfied. So, in this case, (the following approximations are easy to
see if one thinks of each sum as being approximated by an integral):
(mo — $)Ls>1 + (s — no)Ls<r

K2y =
(h1/2s) mo + no
1

Sww = wgh =
Z mo + No

3 3

+n
S = Y2p M
e Z s m0+n0)2

Sy = E Y —
v v (mo + ng)

Because of our assumption that all w;; are the same, we don’t need to distinguish between
Swwwkl and just call all of them S5,,. Likewise for 9,6 and Sgyy. We can now compute

the variance of QZ] Then, (where to simplify the equations we have taken: WOGiinT, =

Oth(”z]) - A?hp(ljlj) - p)

mo + no 0+ mo 3(ng 4+ mg)?

Consider the three components of the asymptotic covariances in (9): the first term,
05w, would be present even in the i.i.d. case. This term reflects sampling error, and can
be made arbitrarily small by making ng + mo sufficiently large. Indeed, if the conditional

covariance matrix ,{); were constant, the other terms in C(;;xyr, would vanish, and letting

12



ng + mg be infinite would be optimal. The third term, ASyy, reflects the variability in ,€;.
This term can be made arbitrarily small by making ng 4+ mg sufficiently small: the smaller
the window over which the rolling regression is conducted, the more like a constant 12,
is within the window. As indicated in our discussion of jp, the second term, VOApPS, w,
comes from the covariance between the first and last terms. This term drops out when the
data are generated by a diffusion but not, for example, when the data are generated by a
GARCH model. This term also controls how much information about 2, is in the “past”

residuals as opposed to the future residuals.

2.8 Consistent Estimation of Nuisance Parameters

To construct correct asymptotic confidence intervals, we must have consistent estimates of
the components of the conditional covariance of the measurement error ,);, namely ,0;, n As,
and pp;. Sometimes some of these are known a priori: for example, when {, Xy, ,Q:} is
generated by a diffusion process, np(;rny — O,hO(im)t/hQ(th — 2 and 6;;,; — 0 otherwise
as h — 0, thus leaving only A; to estimate. In more general circumstances, however, they
all must be estimated.

We next consider estimation of ,6,and pA,.

Since we have only the most indirect methods of obtaining information about these
parameters, we will need to assume that the processes under consideration are “regular”
over a slightly longer interval. To do this we will use the following uniform convergence
idea. We will say that X7 = o0,(1) holds uniformly over T' € [T",T" + K, h'/?] if for all
€ >0,

su

p P(|X7|>¢)—0as h—0.
T € [T, T" + Kh'/?]

Assumption E Assume there exists a function Kjsuch that K;, — oo as h — 0 such that

Assumption A holds uniformly over T € [T',T' + K ,h'/?].

By way of example, consider assumption A part (iii). It tells us that Az is small:
|hA7| = Op(1). In other words, Assumption A-iii by itself says: Ve > 0, 3M such that
P(|pAr| > M) < € for sufficiently small h. Under Assumption E, we have the following
stronger statement:Ve > 0, 3M such that

sup P(|lpAT| > M) < €
Te[T!T'+Kh/2]

13



for sufficiently small h. We now need to assume that our “targets” don’t change very much

over short time intervals. In other words, we need a stronger version of Assumption B.

Assumption F For the K}, in assumption F,

sup |n8r — nbr| = 0p(1)
e [T, T + Kh'/?]

sup |hAr — pAT| = 0,(1)
T €T, T + Kph'/?

sup lhpr- o] = 0p(1)
e [T, T+ KLh'/?

Assumption (F’) For the K}, in Assumption E, (in the univariate case only)

sup |10/ 125 — w07/ 102%] = 0,(1)
re[T!T'+ K ph1/?]

sup WA /02 — W AT /h Q7| = 0p(1)
TE[T! T+ K, h1/2?]

sup |hpr- npT] = 0p(1)
TE[T!T'+K /2]

Assumption F trivially implies Assumption B. That F’ implies Assumption B follows
from the “near” constancy of Qr over intervals of length A'/2. Assumption I is more natural
for the proof of our convergence theorem, and is easily understood in the multivariate
setting.

In the univariate case, the advantage of using /9% and A/Q? instead of # and A re-
spectively, is that it may be more believable that the “shape” parameters are constant than
the parameters themselves: Constant 6/Q? is equivalent to constant conditional kurtosis
of the increments in ,X;. When ,X; is generated by a diffusion, for example, /Q? = 2.
Constant A/Q? is equivalent to In(;,{;) being conditionally homoskedastic. Many ARCH
and stochastic volatility models effectively assume this (see Nelson and Foster (1994)) and,
as we see in the empirical application below, this homoskedastic In(;€;) seems a reasonable
approximation for U.S. stock prices.

In the univariate case, these assumptions are equivalent in the sense that a process that
satisfies I for some K, will satisfy I'” for some other K';, (and visa versa). But if one of these

K} s is significantly larger than the other, it will allow the use of more data in estimating

# and A.
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We will now outline estimators for # and A. First define a matrix f.(7) which can be

thought of as being Q. —Q,_, for an appropriately defined O

T4ehl/?

= 3 RTVHARX, — i As)(ARX, — pitsAs) fe —

s=71,7+h,...
T—ehl/2
- S RV (ARX, — pfis As) (AR X, — nflsAs) [
s=7,7—h,7—2h,...
6 and A can now be defined as:

T+K,hl/?

R € R
Ouiknr = oY ST FineM funye(T) = Agjryre’ /3
BT T4h,...

3 T+K,hl/?

.. _ n o 2
26K ), TZT,ZT;-h,...f(Z])S(T)f(M)(S(T) 30k /0

AgirnyT

(10)

(11)

In the case where ¢ € § these estimators are more intuitive because the “corrections” are

small and only the sums themselves need be considered. To actually get the estimators, we

have to solve the simultaneous equations (10) and (11). These estimators are designed to

work with Assumption F. The following theorem shows they achieve this goal.

Theorem 3 (Consistency) Under Assumption D, F, and F, both 07 and Ar are consis-

tent pointwise i T.

Proof: See the Appendix.

For the scalar case, Assumption F’ should hold over a longer interval and so “better”

estimates of # and A should be available. Estimators appropriate for this situation will now

be given. The definition of f. is notationally simpler in the scalar case:

T4ehl/2
fE(T) = Z h_1/2(Ath - hﬂ5A5)2/€ -
s=71,7+h,...
T—ehl/2
Z h_l/Q(Ath - hﬂ5A5)2/€

s=7,7—h,...

Now modify (10) and (11) as follows:

A T4+Kpht/?
Qe "1
or =

2/02 A2
—QKh fe(m)? /7 — Are” /3

=TT 4h,...

Ao T+Kphl/?
305

Ap = 2102 — 367 /62
T =35k, T:T;rh’...fé(ﬂ/ s =307/
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These are the estimators that we actually use in the empirical example.
We will see from the simulations that the following estimator appears to do somewhat

better for A in the scalar case:

3QQT T+K,hl/? )
A 3 1/2Y 1O.N\2 _ 24 /52
T = ) T:Z; log(QUT + 6h™ %) /) 3071/6%, (12)

where € is taken to be a 1 sided rolling regression of length 6A!/2. Eq. (12) can be seen to
be close to (117) if a one term Taylor series for the log is used.

Without further assumptions on the processes X; and ); it is impossible to estimate
P kiye- In order to prove this we have to find two models which have identical observable
random variables (i.e. the distributions for the X,’s are the same) but have different values
for the parameter pp(;;ry. Luckily Shephard (1994) does exactly this. He starts out
with a stochastic volitility model which by construction has a p of zero. In other words,
Q; = Var(X|Fi—p) where F is the o-field generated by both the observed state variable
X and the unobservable latent variable ). He integrates out this latent state variable and
generates a GARCH model. This is equivalent to looking at €'y = Var(X;|G;—) where G
is the o-field generated only by the observable state variable X. In this new model, p = 1.
Since only the process X is observed, it is impossible to distinguish between these two

models. Thus, p is unidentifiable since it changes with the definition of the o-field.

3 Efficiency and Optimality

Throughout this section, we will use various techniques of estimating a particular €2;;. Thus,

we will think of ¢, j as fixed. We will call 10;:5)1, = 0, L A¢jij1, = A5 RP@ji5)T. = p- Further,
because we will want to compare windows of different lengths, we will take our conditioning

time to be Ty, = T — kh~1/2 for some sufficiently large k.

3.1 Optimal Lead and Lag Lengths in Standard (flat-weight) Rolling Re-

gressions

Consider again the example of the standard rolling regression in the previous Section, in
which, for some nonnegative ng and mg the weights are given by pw; = h1/2(n0 + myg) -
I(t € [—nohl/z,mohlﬂ]). This weighting scheme is of special interest, since it is most

th

frequently encountered in practice. The asymptotic standard error for the i7" element of
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the measurement error in the conditional covariance matrix is given in (9). In other words,
SE(Q;)? = (bias)? + Var(€;) = 0%+ Cyji;

0 mo — Ng mg + ng
&~ L WVEOA + A .
mg + no pno + mg 3(no 4+ mg)?

Where the first equality follows by definition of the mean squared error, and the approxi-

mation follows from our Theorem 2.
Theorem 4 (flat-weight)

o The asymptotic variance-minimizing backward looking flat-weight rolling regression

(i.e., mg = 0) is given by setting ng = \/?;X—e. The asymptotic measurement error
variance (see (9)) achieved by this choice of mg and ng is (2 — p)y/AL.

o The asymptotic variance-minimizing forward looking flat-weight rolling regression (i.e.,
nog = 0) is given by setting mg = \/?;X—e. The asymptotic measurement error variance

achieved with this choice of mg and ng is (2 + p)[A8/3]'/2.

o When p > (3/4)'/2, the one-sided backward-looking flat-weight rolling regression is
asymptotically optimal in the class of flat-weight rolling regressions. When p <
—(3/4)1/2, the optimum is a one-sided forward-looking rolling regression. When |p| <

(3/4)12, the asymptotic optimum is a two-sided rolling regression with

no = /3(1— p2)0/A+pm, and (13)
mo = \/3(1—p2)/A - p\/6/A (14)

The minimized asymptotic variance when |p| < (3/4)Y/? is \/AO(1 — p?)/3.

Proof: See the Appendix.

Note the role of ,p in determining the optimal weighting scheme: when GARCH gener-
ates the data, pp = 1 and all information used by the rolling regression about ;€; is in the
lagged residuals. The closer p is to 1 therefore, the more weight is optimally put on lagged
(as opposed to led) residuals.

The pp = 0 case is also instructive: here the optimal weighting scheme is two-sided
with equal window lengths on each side. This cuts the asymptotic variance exactly in half

compared with the optimal one-sided rolling regression.
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3.2 Optimal Weighted Rolling Regressions

Although flat-weight rolling regressions are widely used, they are generally non-optimal:
Theorem 5 (Optimal weights) Define 8 and A as in (7) and let o = \/A/9.

o The asymptotic variance-minimizing backward looking (i.e., all the weight is on lagged
residuals) weight function gw; is given by I{Ko}aeat. This achieves an asymptotic

measurement error variance of vV A8(1 — p).

o The asymptotic variance-minimizing forward looking weight function qw, is given by

I{t>0}a6_at. This achieves an asymptotic measurement error variance of vV A8(1+ p).

o The asymptotic variance-minimizing weight function qw; is given by

—Qs > 0
o, = { pae for s > (15)

(1 —plae>s for s <0,

where p = (1 — p)/2. This achieves an asymptotic measurement error variance of

(1/2)VAB(1 - p?).

Proof: See the Appendix.

shorten, kill, etc!

Others (Geno-Catalot, Laredo and Picard (1992), Corradi and White (1994), Banon
(1978), Dohnal (1987) and Florens-Zmirou (1993)) have estimated €; by non-parametric
methods. Their estimators often achieve better rates of convergence then we do since they
assume that €4 is much smoother than we assume it to be. On the other hand, we can often
handle a more general situation than they can. So, the choice of estimator and its resulting
rate of convergence depends on which assumptions are appropriate.

Note that the estimators recommended Theorem 5 violate our assumptions in the sense
that gws does not have compact support. Of course the recommended gw; can be arbitrarily
well approximated by a w which does have compact support.

Further notice that in terms of forecasting (i.e. backwards looking) the optimal weighting
is the same regardless of the value of p. Thus even if p can not be estimated, optimal forecasts
for € are still available. Of course, we wouldn’t know how accurate these forecasts in fact
are!

Another popular strategy for estimating conditional covariances—chopping the data up

into short blocks and estimating covariances as if they were constant within the blocks
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(see, e.g., Merton (1980), Poterba and Summers (1986), French, Schwert, and Stambaugh
(1987))-is a special case of the two-sided flat-weight rolling regression. Suppose the block
is composed of a total of K observations. At the left (right) end point of the block, the
covariance matrix estimate is a one-sided rolling regression using K led (lagged) residuals.
Between the two end points, the estimate is a two-sided rolling regression. If we set K =
h=1/2kg, then the asymptotic measurement error variance at a point a fraction 7 through

the block (0 < 5 < 1) is obtained from (9) by setting ng = kon and mg = ko(1 — n):
C = 6/ko + pVOA(L = 20) + (Mbo/3)[” + (1 = )] (16)

which, when |pv0Ako| < 1/2, is minimized when 5 = 1/2 — p/8/Ako, lending a bow shape
to the confidence intervals.

An obvious implication of Theorem 5 is that flat-weighting schemes such as one or two-
sided rolling regressions or block-constant estimators are inefficient. Unfortunately, how-
ever, constructing the asymptotically efficient weights requires consistent estimates of the
nuisance parameter processes {p:}, {A;}, and {6;}. Can we construct dominating weighting

schemes without knowing {p;}, {A:}, and {6;}? The answer, it turns out, is yes:

Theorem 6 (Dominating flat weights) For every i and j, define the weights pw;jy, 1
by (6) (i.e., we use n = noh™ Y2 lagged residuals and m = moh™"? led residuals). Define

*

an alternative set of weights WOy by

y 32(ng + mo) exp[=32RNAT — 1) /mo]  if T >T
hOGj)yr—1 = (17)

3Y%(ng 4 mo) exp[=3Y2RVA(T — 1) /no]  if T < T.

Then the asymptotic variance obtained using hw(*ij)T—T is lower than the asymptotic variance

obtained by using pw(;;),—1 for any p,8, and A, with
C—C"=(1=V3/2)(¥(0=)4(8/mo + Amo/3) + ¥(0)2(8/no + Ang/3) ) > 0.

The idea behind Theorem 6 is simple: we leave the total share of the weight put on led
and lagged residuals unchanged, but alter the shape of the weights on each side of time T’
from a block-shape to an exponential decline.

There is another natural way to dominate a block-constant estimation scheme, provided
we are willing to consider average, rather than pointwise, measures of accuracy: integrate

the measurement error variance (16) across the block (i.e., integrate (16) over n from 0 to
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1), yielding an average measurement error variance across the block of (“b.c.” is for “block
constant”) CA'b'C‘ = 0/ko + (Ako/6) Now consider a flat-weight, two-sided rolling regression
using K /2 = .5k,h~'/? leads and the same number of lags. By (9), this achieves an average
measurement error variance of (“t.s.” is for “two sided”) (Y 5 = 8/ko + (Ako/12), which
is strictly smaller whenever A > 0, regardless of the values of kg, p, and . Of course,
this two-sided rolling regression is itself dominated by an exponentially weighted rolling
regression constructed as in Theorem 6.

If we are willing to assume that p = 0, as it would be, for example, if the data are
generated by a diffusion observed at discrete intervals, further dominance relations follow:
in particular, a one-sided rolling regression using, say, n lags and no leads has exactly twice
the asymptotic variance of a rolling regression using n lags and n leads. The resulting two-
sided rolling regression is itself dominated by an exponential-weighted rolling regression

constructed as in Theorem 6.

3j¢ 3¢ 3¢ o e e sk 3j¢ 3j¢ 3 3¢ o e e e s

Figure 1 near here

Several of the dominance relations are illustrated in figure 1. Using numbers from the
empirical application in Section 5, figure 1 plots the ratios of the standard deviation of
measurement errors in S&P 500 volatility estimates using various estimation schemes to
that obtained using the optimal two-sided exponentially weighted estimator. The graph
was constructed under the assumption that p = 0. In switching from the optimal two-
sided exponentially weighted estimator to the optimal flat-weight estimator, the standard
deviation of the measurement error rises about 7%. In switching from the optimal-two
sided to the optimal one-sided estimate, the standard deviation goes up by a factor of /2.
The bow-shaped pattern attained by the block-constant scheme of French, Schwert, and
Stambaugh (1987) and of Poterba and Summers (1986) is clear in figure 1: when p = 0,
this estimate does relatively well mid-month but poorly at the beginning and the end of the
month. Switching from this block constant scheme to using a two-sided rolling regression
with the same number of residuals (as proposed above) achieves a standard error equal to
the (minimized) mid-month standard error.

If standard errors are estimated for the variance estimate under the false assumption
that the covariance matrix truly is constant within blocks, only the sampling error term
6/ko appears, giving an unrealistically optimistic picture of the accuracy of the estimated

covariance matrix. This is illustrated in figure 2.

3j¢ 3¢ 3¢ o e e sk 3j¢ 3j¢ 3 3¢ o e e e s

Figure 2 near here
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3.3 The Relation between the Regularity Conditions and the Optimality
Results

Clearly there are relaxations in the regularity conditions which would invalidate the opti-
mality results. For example, suppose that within each month, volatility is constant, with
each month’s volatility an i.i.d. draw from some distribution. Presumably in this case
the block-constant estimation scheme of Poterba and Summers (1986) and French, Schwert
and Stambaugh (1987) would dominate two-sided exponentially declining weights. This,
however, would violate our regularity conditions, which (asymptotically) ruled out discrete
jumps in ,€24.

A more subtle example was suggested to us by John Campbell: suppose volatility fol-
lows a moving average process in which volatility shocks persist—with constant weight—for
some period and then suddenly die out. In this case, a flat-weight rolling regression would
presumably dominate an exponential weighting scheme. (This is obviously true, for exam-
ple, if volatility follows Engle’s (1982) ARCH(p) process with equal weights on p lagged
residuals.) Here discrete jumps are not the problem, since it is easy to show that such
a moving-average scheme is consistent with a continuous sample path for volatility in the
limit as h — 0. For example, for some A > 0, set ; = exp(W; — W;_a).

Though it may not be as obvious, this scheme is also ruled out by our regularity con-
ditions, which not only assumed that the sample paths of the state variables were (asymp-
totically) continuous, but also that over short time intervals, the unpredictable component
of changes in the state variables swamps the predictable component®i.e., the noise swamps
the signal for sufficiently small h. In the moving average example just given, the noise and
the signal are of the same stochastic order as h — 0. Our regularity conditions effectively
assume that shocks to the state variables decay either gradually or not at all. This means
that over very short time intervals, the movements in ,€Q; and , X; look like random walks.

Since our estimates of £); are formed over short intervals, and since X; and €; behave
asymptotically like random walks over such short intervals, it should not be too surprising
that our optimal weighting scheme is two-sided exponential: this is the weighting scheme
obtained in the literature on random coefficient models under the assumption of a Gaussian

random walk (independent of the right-hand side variables) for the regression coefficients—

°A continuous time semimartingale is decomposable (by definition) into the sum of a martingale (which
may be of unbounded variation, and so very rapidly oscillating) and an instantaneously predictable compo-

nent of bounded variation (which is much more slowly varying over short time intervals).
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see, for example, Fisher and Kamin (1985).

If the regularity conditions asymptotically ruling out discrete jumps in Xy are relaxed,
our results are invalidated: suppose, for example, that , X; is generated by a jump process,
say a poisson, observed at discrete intervals of length h. For each T', the normalized residual
h_l/Q[hXt — nXi_p] converges in probability to zero as h — 0, yet its conditional variance
does not vanish to zero with h. Clearly a rolling regression using O(h1/2) window widths
cannot consistently extract this variance, since unless there is a jump within the window
(which happens with vanishingly small probability as h goes to zero), the variance estimate
produced by the rolling regression is 0! The problem here is that the normalized residuals
h_l/Q[hXt—hXt_h] are too thick tailed (i.e., they are nearly always small but are occasionally
enormous —i.e. # = oo). This prevents us from applying a law of large numbers and a central
limit theorem locally in time to extract ;€0; from the squared increments in , X;.

We have also assumed that our variance process, (), does not have jumps. In this case
though, the problem becomes in some sense easier instead of harder. If the variability of
is contained in jumps, then “most of the time”( is relatively constant. So, long windows
can be used for the rolling regression. Unfortunately, the asymptotic variance will still be
infinite, but this is now due to a few large errors. In other words, most of the time, we
will be getting very accurate estimates, but when a jump occurs, we get asymptotically an

infinite error.

4  Estimating conditional betas

In many applications, especially in finance, conditional betas are of greater importance than
conditional variances or covariances. Suppose that A, Xy, is the return on some market
index, while Ay X is the return on some other asset or portfolio. The true and estimated

conditional betas of asset 7 with respect to the market index are defined respectively as

w3 = 1m0 5/ n Q1 and 5550 = 1 Q0 5/ 1

Since the estimated beta is a differentiable function of the asymptotically normal covariance
and variance estimates hQLN and th,Ltv it is also asymptotically normal (see, e.g., Serfling

(1980, Section 3.3, Theorem A), with mean zero and asymptotic variance

hQiit[hC(ljlj)t + hﬁ]z,thc(llll)t = 21835000 (1114 (18)
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We next consider optimality, assuming, for simplicity, that the same weights are used in
forming both hQLJ‘,t and th,Lt- This corresponds to using weighted least squares (regressing

ApX; .on Ay Xy ) to estimate p3;;. Substituting from (7) into (18) yields

AVAR (W84 — 131.4]) = [05Sww + ApSww + 2p51/050 55 wu] (19)

where
05 = (0115 + w87 en0aninye — 208500011150/ 12T .45 (20)
Ag = (A1) + hﬁf‘,t rA 111yt — 2 mB5 hA(lllj)t)/hQiLta (21)

and (deleting the h and ¢ subscripts to improve legibility)

ps = P15157/ 01515 M515 6% 1111V 01111 A1t —Be1115+/ 01111 A1y —Be1j114/ 01515 A1111
e U VoA . . .
As in Section 2, the three terms are easily interpreted: 65 is the sampling error variance,

Ag is the instantaneous conditional variance of the increments in ,3; . The 2pg./03A5 term
arises from the covariance between the other two terms. Again, this term is zero for diffusion
models and many stochastic volatility models. Note that (19) has the same form as (9) if
we substitute 8z, Ag, and pg for 8, A, and p. Apart from these substitutions, the optimality
and dominance results of Section 3 are unaffected. In particular, the asymptotically optimal
weights are two-sided and exponentially declining, just as derived in the random coefficients
literature under the assumption that betas follow random walks independent of returns on

the market index.

5 An application: Volatility on the S & P 500

To illustrate the application of our results, we estimate the conditional variance of continu-
ously compounded daily capital gains on the S&P 500. Our data extend from January 1928
through December 1990. Poterba and Summers (1986) and French, Schwert, and Stam-
baugh (1987) employed the same series (up to 1985) in their work. The series exhibits small
but statistically significant serial correlation of about 6% at one lag, presumably caused by
thin trading of the stocks in the underlying index—see, e.g., Scholes and Williams (1977).
There is little serial correlation at longer lags. Since this serial correlation is not of interest
to our application, we pre-whitened the series with an AR(1). Another ‘nuisance’ aspect of
this data is the contribution of non-trading days to variance: i.e., stock volatility is typically
higher following weekends and holidays, since the information arriving during the period

of market closure must be reflected in asset prices when the market re- opens. (See, e.g.,
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French and Roll (1986).) Nelson (1989) estimated that each non-trading day adds 22.8%
to the variance of the S&P 500 on the next trading day. Accordingly, we divide each of the
pre-whitened capital gains & by (14 .228 - Nt)l/z, where Ny is the number of non-trading
days preceding trading day t. The transformed series is plotted in figure 3.

KKK KKK Figure 3 near here KKK KKK KoK

As noted earlier, French, Schwert, and Stambaugh (1987) employed a block-constant
estimation strategy for the variance. They noted that the resulting Q, series is skewed to
the right, and that the variance of the innovations in € is an increasing function of €.
French, Schwert, and Stambaugh took the log of Q; and found that this transformation
adequately stabilized the variance. This is apparent in figure 4,

KKK KKK Figure 4 near here KKK KKK KoK
which plots the log of a simple flat-weight rolling regression with a window length of 25 days
on each side. We therefore make the simplifying assumption that In(£;) is conditionally
homoskedastic (i.e., Ay = AQ?) . We also make the simplifying assumptions that conditional
kurtosis is constant (i.e., §; = Q%) and that p; = 0, i.e., stochastic volatility or diffusion
rather than GARCH as the data generating process. These assumptions allow us to set K, =
oo in Theorem 3. We then formed initial conditional variance estimates using two-sided flat-
weight rolling regressions. From these initial variance estimates, we created estimates of
# and A using the method of Theorem 3. These estimates in turn implied optimal n» and
m values (n = m) for two-sided rolling regressions through formulas (13) and (14). We
then iterated this procedure, at each stage using the “optimal” n and m suggested at the
previous step until the procedure converged. (This occurred very rapidly, since for m + n
values below 52 a higher value was suggested, while for n + m above 54 a lower value was
suggested. We settled on a window length of 52.) The estimated # and A values were 2.72
and .0120, respectively, implying through Theorem 5 an optimal exponential decay rate of
a = .0665 for a two-sided exponentially weighted rolling regression.®
To gauge the reliability of our asymptotic approximations, we performed 600 replications

of the following experiment calibrated to the S&P 500 data: First, we generated 16885

6To gauge the importance of our pre-whitening and non-trading days adjustment, we repeated the esti-
mation procedure using the raw (i.e., unadjusted) capital gains data. The results changed very little: the
estimated # and A were respectively, 2.668 and .0124, and the optimal m + n and exponential decay rate
were 51 and .068 respectively.
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observations of In(€;) and AM,; as
In(Q) = —.4246 + .9944 - [In(Qq_y ) + .4246] + 2o, (22)

AMt = 93/2 T2t (23)

where 21 ¢, and 2, ¢ are mutually independent and i.i.d., with 2 ; distributed as a Student’s
t with 12 degrees of freedom, mean 0 and variance 1 and zy¢ is N(0,.0120). The degrees
of freedom of the Student’s t distribution was selected to match the estimated conditional
kurtosis from the S&P 500 data. The variance of z;; was selected to match the estimate
of A for the S&P data. The population mean of In(£;), which was -.4246, matched the
sample mean of the fitted In(Q;). The slow mean reversion (.9944) was selected to match
the unconditional variance of In(£;) to the sample variance of the fitted In(€};) plus the
variance of (In Q, —In€Q,).

For each replication, we repeated precisely the same estimation procedure we had applied
to the S&P data. Tables 1 & 2 below report means and standard deviations of the estimated
parameters in the simulations. Standard errors (i.e., sample standard deviations divided by

the square root of the number of simulations) are given in parenthesis.

Mean of Sample
Actual
Estimated Standard
Coefficient
Coefficient Deviation
A 0.01051 0.0120 .0012
(0.00005)
0 2.480 2.75 .082
(0.003)

Table 1: Using equation (12)

The estimates for both A and # are downward biased (by 1.2 and 3.3 standard deviations
respectively in table 1 and 5.1 and 2.5 standard deviations in table 2). The width of the
asymptotic confidence intervals, the optimal m 4 n etc., are functions of \/A/f. The bias
in this ratio is quite small-for example the optimal m + n for two-sided rolling regressions
is given by (13) and (14) as (12-68/A)"/? = 52.4 for the simulation. The mean estimated
optimal m + n was 53 with a standard deviation of 3.6 (using equation 12 it was 64 + 4.3).
Our estimates of (A/0)"/? were close despite the biases in both A and 6. Since A and 6 are

biased in the same directions, the biases partially offset in (A/0)1/2. It is also worth noting
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Mean of Sample

Actual
Estimated Standard
Coefficient
Coefficient Deviation
A 0.007 0.0120 .00088
(0.001)
0 2.527 2.75 .088
(0.004)

Table 2: Using equation (117)

that the asymptotic standard deviation of the measurement error achieved by the optimal
flat-weight or exponentially weighted rolling regressions is proportional to (A0)1/4. This
means that measurement errors in A and # must be quite large to have much effect on the
accuracy of the confidence intervals. For example, getting 8 wrong by a factor of 2 throws
off the confidence intervals by only about 19%. Tables 3 and 4 compare the asymptotic
versus actual coverages in the measurement error, giving the proportion of measurement
errors falling between £1,£2, and £3 estimated asymptotic standard deviations, along
with the standard errors. The asymptotic confidence bands are slightly too narrow, but not

drastically so.

Mean
Standard . Asymptotic
o Coverage in
Deviations ) i Coverage
Simulation
1 0.6393 0.6827
(0.0007)
2 0.9306 0.9545
(0.0004)
3 0.9929 0.9973
(0.0001)
Table 3: Using equation (12)
sk stk ke s ok ok Figure 5 near here st stk ke s ok ok ok ok

Figure 5 plots 95% confidence bands. We used the delta method to transform our
asymptotic distribution for h_1/4(Q — ) into an asymptotic distribution for h_1/4(an -
In Q). This, combined with our assumption that 6, = 6 - Q? and A, = AQ? implies that the

width of the confidence bounds in a log plot is constant, so the extension from figure 5 to
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Mean
Standard ] Asymptotic
o Coverage in
Deviations ] i Coverage
Simulation
1 0.5915 0.6827
(0.0008)
2 0.8991 0.9545
(0.0006)
3 (0.9848 0.9973
(0.0002)

Table 4: Using equation (117)

confidence bounds for the whole sample is immediate.

3j¢ 3¢ 3¢ o e e sk 3j¢ 3j¢ 3 3¢ o e e e s

Figure 6 near here

Figure 6 is analogous to figure 5, except that it uses simulated data, and plots the true
(simulated) Q%/z along with the £2 standard deviation confidence bounds. Overall, the
asymptotic approximation performs tolerably well in the simulations using equation (117)

and extremely well using (12).

6 Conclusion

While this paper has, we believe, shed new light on rolling regressions as conditional variance
and covariance estimators, much work remains. For example, in tests of asset pricing
theories the link between conditional means and conditional covariance matrices is usually
crucial. As we have seen, conditional covariances can be accurately measured using high
frequency data (i.e., taking h to zero). Unfortunately, estimating conditional means requires
a long span of data as opposed to a high observation frequency, see e.g., Merton (1980).
Since the asymptotic results developed in this paper are pointwise in time, they do not
adequately equip us to study the joint evolution of conditional means and covariances over
time.

A second limitation is our consideration only of unconstrained linear regression to com-
pute the estimated conditional covariance matrix. Constraints on the conditional covariance
matrix (e.g., on the eigenvalues or eigenvectors) are likely to prove important in dynamic
factor analysis or principle components.

Finally, as we have seen, conditionally thick-tailed processes reduce the efficiency of
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least squares based procedures such as rolling regressions. It should be possible to adapt
the methods for robust estimation of covariance matrices developed for the i.i.d. case (see,
e.g., Huber (1981)) to the rolling regression framework.” Extending our results in these

directions may prove quite challenging, but should be worth the effort.

The Wharton School, University of Pennsylvania, Philidelphia PA 19104 Phone: 215 898
8233.

University of Chicago Graduate School of Business and N.B.E.R.., Chicago IL 60637. Phone:
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APPENDIX

We will drop the prefix “A” from our stochastic processes to conserve space in our proofs.
Lemma’s, theorem’s etc., will include the “h”’s. All processes depend on h.

PROOF OF THEOREM 1: We will first divide the problem into two pieces.
Definition hﬁ(ij)T =2 h Q) rhwr—TAT.
Lemma 1 If Assumptions A & D hold, then

h_1/4(Q(ij)T — Q(Z])T) = h1/4 ZwT—TAB(ij)T + Op(l)

Y Qs — Qi) = BV Vo rAM(Gy, + 0p(1)

From lemma A.1, it is obvious that theorem 1 holds. The proof of lemma A.1 relies on

some other lemmas which we will prove first.

"Robust conditional variance estimation methods have been employed in the ARCH literature. For
example, Taylor (1986) and Schwert (1989) estimate the conditional standard deviation as a distributed
lag of absolute residuals (rather than estimating the conditional variance as a distributed lag of squared
residuals). Schwert was explicitly motivated by the robust variance estimation methods of Davidian and

Carroll (1987). For a formal analysis of the robustness properties of these models see Nelson and Foster
(1992).
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Lemma 2

Q() EQUT—I—\/_ZUJT 1AQ iy + h(Bij + Bji + D)

where
Bii =Y (pj)yr — gy ) wr—TAM ),
and

D=3 (e — igiye ) (BGeyr — iy wr—TAT

PROOF OF LEMMA A.2: First note that
AX(jyr = ity = AMgy, + higy = hityr

=AMy, + bugyr = figyr)
So

[AX i)y = Ry TAX (Gyr — Riljy] (AM), + h( L) u(z 7)) X

(a0, + )

= AM(z’vAM(j)T + h( iyr = By ) AM Gy, +
+ Ay = Bgyr ) AM Gy +
+ W2y — Gy ) gy — gy

Define A =3 wT—TAM(i)TAM(j)T Thus, Q(ij)T =A+ h(BZ']‘ + Bji + D).
Now analyzing A:

A = ) o AMeAM),
= 2 Qi wr-rAT 4+ 3 wrr(AM(o) AM (), = Q(ij)-A7)

= Qujyr +Vh Y w1 AQij),

Lemma 3
Qijyr — Qijyr > wr—TAT =3 Vst AMGH+E+F
5=0
where £ = NT) 3 02q Ys_rAs and F =372 Uo_7(A(s) — A1) As.
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PROOT: B
Qijyr — Qe D wr—rAT = Y (Qijyr — Qijyr)wr—1AT

s=0 T

T—h T—h
= (22 AQijewr-rAT = 3 D AQij)wr-rAT)

T>T s=T T<T 8=7

= (> w7 AQ (i) AT — > wr 7 AQ (), AT)
T<s<T T<s<T

0 0 T—h s

= (D0 D werATAQu s — D D wr_rATAQ))
s=T r=s+h s=0 7=0

= Z(ISZT Z Wy AT — Iser Z w7 AT)AQ ()5
5=0 T=s5+h =0

= Z\IJS—TAQ(ij)s
5=0

Now use the Doob-Meyer decomposition of AQ, and we get

Qipr = Qijyr 2 wr-1 = 3 Vorr(A(s)As + AMT,)
s=0

=AT)Y_ W rAs+ Y e 7(A(s) = MT)As+ Y U 7 AMG),
s=0 s=0

s=0

Lemma 4 Under Assumptions A & D the following hold

(A.1) Bi; = o,(h™3%)  (A.3) £ =0,(h?
(A.2) D =0,(1) (A.4) F =0,(h?

PROOF OF (A.1): Because u,fi, and w are all predictable, and AM is a martingale
difference array,

E(Bij) =0

and
E(B%) = EQ_(iyr — gy wi_gQ)-AT).

T

But, by part i of Assumption (A) we know that

sup  (pgyr — Aye)’ = 0p(1)
T.<r<T*
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By Assumption D, we know sup(w?_;) = O,(h™'). By parts iv and vii of Assumption A,
we know that sup(€l(;;);) = Op(1). By D, we know that there are O(h="/%) terms in our
sum. And by definition, A7 = h. Thus, E(ij) = Op(h_l/Q). So, by Jensen’s inequality

P(Bi; > Mh=%) < 0,(h=Y?)/M*h =3/

= Op(hl) = op(1)

PROOF OF (A.2): Using part i of Assumption A and Assumption D we see that D = O,(1).
PROOF OF (A.3): Using part iii of Assumption A, we see that Az = O,(1). By Assumption
D and the definition of ¥ we can therefore conclude that & = O,(h'/?).

PROOF OF (A.4): Using part ii of Assumption A, the definition of ¢, and Assumption D,
we see that F = O,(h'/?). o
PROOF OF LEMMA A.1: Follows by substituting lemma A.4 into lemmas A.2 and A.3.
O

Thus, we have now completed the proof of theorem 1.

PROOF OF THEOREM 2: By Theorem 1, we need only analyze
WS we rABjy, +hTY U p AM

But since B and M™ are martingales, we know its mean to be zero and its covariance

between terms ij and kl to be:

hi/? Z Wi =T W (k1) r—TO( k1) - AT + B2 Z Vi) r—T Pkl r—T N k) AT

+ Z w(ij)T—T¢(k1)T—T\/ e(ijij)ﬂ-A(klkl)ﬂ-p(ijkl)ﬂ-AT
+ > Wiy Uiy r = Okt e Mijig) e P (i) AT

which by Assumptions (A.v), (A.vi) and B is asymptotically equal to C ;7. Now applying
the standard martingale central limit (which uses Assumptions C and A.vii and A.viii) see,
e.g., Liptser and Shiryayev (1980), we get the desired result. O
PROOF OF THEOREM 3: Before we begin we have to mention a detail about what we
are going to prove. We will prove that trimmed-mean versions of (10) and (11) will work

have the desired properties. Thus, we will replace the sum
> fe(r)?
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by a trimmed version, namely

Z min(f.(7)%, M).

(In the multivariate case, each element of the matrix f.(7)f.(7)" should be trimmed by the
constant M.)

First we need to represent f.(7) as

T4ehl/2 T
flry= >0 BTVHAX, - pAs)e— S BTVHAX, - fiAs)? /e
5=T s=T—chl/2

=3 2w (s — T)RMYE)(AX, — fi,As)?

where w,(z) is defined as h_l/Q%sgn(x)I[_ge](x), where sgn(x) is the sign of x. Le. sgn(z) =
1if 2 > 0, and sgn(z) = —1 if # < 0. Thus, we have written f. in the form of equation
(5). If >, we(s)h = 1, then Assumption D would hold and we could apply lemmas A.2-A.4.
But, looking at the proofs of A.2-A.4 we see that this fact isn’t used. Thus, from lemmas
A.2-A.4 we have an asymptotic representation for f.(7) in terms of martingales. Using the
same CLT as before, we can find the asymptotic distribution for f.(7). In particular f.(7)

converges to a normal with mean zero and variance of 20, /¢4 2¢A; /3. Thus, asymptotically

]\/l[im }lbin% E(min(f(1)*, M) — 26, /¢ + 2¢A, /3.

Now applying the law of large numbers
thl - hliLnO 1/[(2; min( f.(7)%, M)/Q(7) — 20, /e + 2¢A, /3.
Substituting this into equations (10) and (11) we get the desired result.

Note: This proof also works for the multivariate problem.

Note: The importance of the truncation is that convergence in distribution will imply
convergence in mean only for bounded random variables. So, we must make the f.(7)
bounded to use the law of large numbers. a

PROOF OF THEOREM 4: This theorem consists of three different optimizations of
equation (9). Part (a) forces mg to be zero, part (b) forces ng to be zero, and part (c) only
constrains ng and mg to be non- negative. Parts (a) and (b) follow from taking derivatives

and setting equal to zero. By the form of equation (9), it is obvious that there is a unique
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minimum. Part (c) is solved by using partial derivatives. The side constraints of non-
negativity for ng and mg come into play for extreme values of p. Thus, we get the three
part solution. O

Lemmas A.5 through A.8 set up theorem 5.

Lemma 5 (Some calculations for exponential weights) let ¢; = 3*(1—3), fori=0,1,2,....
Define

Ci = Z C; = ﬁZ
7=t
Then,
Yo =(1-p)/(1-p%)
=0
and -
> CE=1/(1- 5%
=0
. The minimum of
S Ay (24)
=0 =0
occurs at 3 =1— VAL 0(\/2), and the minimum value obtained is \/A + 0(\/Z).
PROOF: Note that formula (24) is equivalent to
(1= 3)/(1= %)+ A/(1 = %) (25)
The following algebra minimizes (25) to generate our result. (¢ =1 — 3)
min(e® + A)/(1 = (1 —¢)?)
min(e+ A/€)/(2 —¢€)

for which the minimum occurs at ¢ = A(1 — ¢), which is € = v/A + o(v/A), and the value
of (25) at this point is v/A 4 o(v/A). ]

Lemma 6 (Discrete approzimately equals continuous), Any cis which sum to one have

the property that the value of equation (24) is at least A. In particular, let D =
{£0)] fooo f(t)dt = 1}, then

Zn: c? + Azn: C?
=1 =1

v

minsen /OOO f(t)2dt+A/0°°(/0°O Fls)ds)2dt (26)
VA.

IN
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PROOVF: Taking
fty=wifori<t<i+1

which is in D, and its value is exactly the left hand side of (26). This proves the inequality
part. Write

f(t) = ae™ 4 (1),
with a = v A. Then
/0 T (t)dt = 0 (27)

Because [ f(t)dt = 1, and [ae™®'dt = 1. The following follows by an interchange of
integrals and the definition of 5(-):

/OOO J*dt = a2+ /OOO n(t)ae™*dt + /OOO n(t)2dt. (28)

/ f(s)ds = e " + / n(s)ds
i i
Some more calculus yields:

/Ooo (/too f(S)dS)zdt = /OOO n(t)dt — /OOO n(t)e”*'dt + /Ooo (/too U(s)ds)th (29)

Substituting (27) into (29) yields:

/OOO (/too f(s)ds)Zdt: —/OOO —afdt+/ (/ ds) dt (30)

Our desired result is now A times equation (30) plus equation (28). Putting these together
yields (recall a = v/A):

goal_a—l—/ dt—l—/ / dt>a

with equality holding if f(-) = ae”

Obviously,

a

Lemma 7 If Y52, ¢; = p, then ¢; = pB'(1 — 3) is asymptotically (as A — 0) the minimizer
of equation (24) with an asymptotic value of p*v/A.

PROOYF: Lemma A.5 shows the value of (24) for these ¢/s, and lemma A.6 shows they can’t

be improved upon. a
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Lemma 8 Restrict w, such that fooo owsds =p. Then the optimum wy is

pae”*? for s >0,
oWs =
(1 —plae=@ for s <0,

(where o = /A /), which yields an asymptotic variance of
VRB((2p— 12/2 4 1/2 - (2p — 1)p.

PROOF: We will break the problem into two pieces, the positive part (s > 0) and the

negative part (s < 0). Each will be separately minimized for each value of p = [ qw;ds.

/ wS\IJSdSZ/ ws/ wdtds
0 0 s

= (1/2)(/ ws/ wedtds —I—/ ws/ wydsdt)
0 s 0 s

= (1/2)/000/Ooowswtdtds =p*/2

Therefore for fixed p, minimizing the w’s is the same as minimizing equation (26) above

First consider

with A = A/6. Thus, the parameter of the exponential function is identical regardless of p
and regardless of which side of zero we are on. So, a = VA, is optimal. a
PROOF OF THEOREM 5: Lemmas A.5 through A.8 prove everything except picking the
value of p. For parts (A) and (B), the value of p is determined so we are done. For part

(C) we need to minimize the variance with respects to p. The variance is
VAB(2p— 122+ 1/2 = (2p— 1)p)

which is minimized at (2p — 1) = p. Thus, the minimum occurs at p = (1 — p)/2, so the
optimum variance is
— (1/2)VAB(1 — p?)
O
PROOF OF THEOREM 6: Equation 3.7 follows from 9 by substitution. 3.7 is obviously

positive which proves our result. a
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Figure 1: Dominance relations. This graph shows that the accuracy of various estimates
of the variance vs. time. The optimal two sided exponentially weighted estimate is nor-
malized to have a standard error of one. Relative to the accuracy of this estimator, the
optimal two-sided flat weight has a standard error of 1.07. The French/Schwert/Stambaugh
assumes a fixed variance over the month so its performance changes over the month. The
optimal one-sided flat weight estimator uses only historical data and so does worse than the

other estimators which use both the past and the future to estimate ;.
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Figure 2: Real vs apparent measurement accuracy.
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Figure 3: Whitened returns of the S&P 500.
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Estimated 1n(Qy)
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Figure 4: Estimated log of the variance of the S&P 500: A 25 day two-sided flat-
weight rolling regression was used to estimate the variance of the S&P 500. (50 days in
total.) There are 240 non-overlapping estimates of the variance (60 years x 200 trading
days per year / 50 days per estimate). The graph shows that assuming conditional ho-

moskedasticity is reasonable.
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confidence bands for Q%/Z (log plot)
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Figure 5: 95% confidence bands: For each fixed time figure 4 showed the estimate of Q.
This graph shows a 95% confidence interval around that estimate. (€; +2 S. E.) The 95%
holds pointwise, not uniformly over the entire interval so we would expect that 5% of the

time that the confidence interval does not cover the truth. Notice that this is a log scale

plot of the Q%/z.
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confidence bands and realizations for QQ/Z (log plot)
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Figure 6: Simulated data with 95% confidence bands: The “truth” is seen to bounce
around mostly between the confidence bounds—95% of the time lieing between the bounds
and 5% of the time bouncing outside them. Since these bands hold pointwise, the “truth”
should be outside them 5% of the time.
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