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1 IntroductionMost asset pricing theories relate expected returns on assets to their conditional variancesand covariances. See, for example, the review of the ARCH literature in Bollerslev, Chou,and Kroner (1992). It is widely recognized that these conditional moments change overtime. Unfortunately, conditional covariances are not directly observable, so in tests of assetpricing theories researchers must use estimates of conditional second moments. Similarly,market participants use estimates of conditional variances and covariances in hedging, optionpricing, and in many other aspects of portfolio selection. How accurate are these estimatedvariances and covariances? How can they be estimated more accurately?If conditional variances and covariances were constant over time, then standard statisti-cal techniques would yield the answer to these questions. When conditional heteroskedas-ticity is present, these techniques will not su�ce. In fact, as we see in Section 2 below,statistical methods that assume constant variances and covariances even over short timeintervals present a misleadingly optimistic picture of how accurate the measurement is.Though there are many strategies for estimating time-varying variances and covariances,among the most popular have been (a) chopping the returns data into blocks of time andtreating conditional variances and covariances as constant within each block (e.g., Merton(1980), Poterba and Summers (1986), French, Schwert, and Stambaugh (1987)), and (b)the rolling regression approach of O�cer (1973) and Fama and MacBeth (1973).The appeal of such strategies is clear: on the one hand, they allow for the possibility(almost a certainty in economic applications!) that the parameters of the process evolverandomly over time. On the other hand, they impose little structure on the precise wayin which the parameters evolve. All of these strategies accommodate random evolution inparameters by estimating the value of the parameters at time t using only data \near" t.For example, Fama and MacBeth (1973) estimated conditional betas at date t using onlythe returns data for a period of �ve to eight years prior to date t|a \rolling regression."1As Fama and MacBeth explain it, this estimation strategy \reects a desire to balancethe statistical power obtained with a large sample from a stationary process against potentialproblems caused by any non-constancy of the �i." The more important \the statistical1These estimation strategies are also popular on Wall Street: see, for example, the Merrill Lynch (1986)beta book, which uses a �ve-year rolling regression with monthly data to estimate betas. Rolling regressionsare also used in estimating conditional means (see, for example, Banerjee, Lumsdaine, and Stock (1991)),although our results do not apply directly to this case.2



power obtained with a large sample" is, the more inclined a researcher should be to use along string of data in the rolling regression. On the other hand, minimizing the \potentialproblems caused by any non-constancy of the �i" points toward using a short period for therolling regression.Fama and MacBeth's choice of a 5-7 year window was motivated by the work of Fisher(1970) and Gonedes (1973), who found that this window length gave the best out-of-sampleforecasting performance for individual stocks. In related work, Fisher (1970), and Fisherand Kamin (1985) develop approximate distributions for measurement errors in betas andoptimal weighting schemes under the assumption that conditional betas are random walksindependent of market returns.2In this paper, we extend these theoretical results to a much broader class of data gen-erating processes. In Section II we show how, under weak assumptions, to approximatethe distribution of measurement errors in estimated conditional variances and covariances.These results are broad enough to accommodate not only one and two-sided rolling re-gressions, but also more general weighting schemes such as the ARCH(p) model of Engle(1982) and one of the multivariate extensions proposed by Bollerslev, Engle, and Wooldridge(1988).3 In Section 3, we characterize optimal window lengths and optimal weights to usein rolling regressions. Section 4 considers estimation of conditional betas. In Section 5, weprovide an empirical example. Section 6 is a brief conclusion. The proofs are collected inthe Appendix.2 Asymptotic distributionsTo illustrate the intuition behind our approximation method, consider the following simplecase; suppose the data are generated by the di�usiondXt = �(Xt; �t)dt+ �t � dW1;t (1)d�2t = �(Xt; �t)dt+ �(Xt; �t) � dW2;t (2)2There is a large literature on random coe�cient regression, of which the work of Fisher (1970) andFisher and Kamin (1985) is an application. See, for example, Chow (1984) and the references therein.3Asymptotic measurement error distributions for conditional variances generated by other ARCH models(which cannot be accommodated by the methods in this paper) are given in Nelson and Foster (1994), Nelson(1994). 3



where W1;t and W2;t are (possibly correlated) standard Brownian motions, Xt and �2t arescalars, and �(�; �); �(�; �; �), and �(�; �; �) are continuous, with �(�; �) strictly positive.Our assumption that �(�; �) is strictly positive separates our approach from that of thenon-parametric liturature.Suppose that the fXtg process is observable but f�2t g is not. How can we use theinformation in the sample path of fXtg to estimate the path of f�2t g? It is well known thatas a di�usion is observed at �ner and �ner time intervals (say of length h), its conditionalvariance at any instant can be approximated with ever greater accuracy, until in the limitas h ! 0, it is known exactly. To understand why, note �rst that because �2t in (1)-(2) isgenerated by a di�usion, it is continuous (with probability one) as a function of time. Thisimplies that for every � > 0 and every t > 0 there exists, with probability one, a random�(t) > 0 such that supt��(t)�s�t j�2s � �2t j < �: (3)That is, over suitably small time intervals, the change in �2t can be made as small as welike. Now choose a small constant � > 0 and chop the interval [t� �; t] into M equal pieces.We then estimate �2t by �̂2t (�;M) � ��1 MXj=1(Xt�(j�1)�=M �Xt�j�=M)2 (4)(4) is a standard one-sided rolling regression in which we act as if �t were identically zero.When � is small, �t and �2t are e�ectively constant, so when we condition on �t�� and�2t��, the normalized increments (M=�)1=2[Xt�(j�1)�=M �Xt�j�=M ] are approximately i.i.d.N(0; �2t��). Under suitable moment conditions, the tails of these normalized incrementsare well-behaved (i.e., not too thick), allowing us to apply a law of large numbers yielding[�̂2t (�;M)� �2t ] ! 0 in probability as � ! 0 and M ! 1. Failing to correct for the non-zero drifts in Xt and �2t does not interfere with consistency{the e�ect of the drift terms on�̂2t (�;M) vanishes as M !1 and � ! 0.Though quite a special case, (1)�(4) illustrate the basic intuition underlying our results:as M ! 1 and � ! 0, the normalized increments in Xt become approximately i.i.d. withzero conditional mean, �nite conditional variance, and su�ciently thin tails, allowing usto apply a law of large numbers to estimate �2t . As we see below, it is possible{in a farmore general setting{to apply a central limit theorem to develop an asymptotic normaldistribution for the measurement error [�̂2t (�;M)� �2t ].4



We will now introduce the notation need for our theorems. For each h > 0, consider arandom vector step function hXt 2 Rk which makes jumps only at times 0; h; 2h, and so on.Assume that hXt is a random process with an (almost surely) �nite conditional covariancematrix. Formally, hXt is a locally square integrable semimartingale{ see e.g., Jacod andShiryaev (1987) chapters 1 � 2. We take hXt to be adapted to the �ltration fhFtg wherefhFtg is increasing and right continuous. hXt 2 Rk can be decomposed into a \predictable"part and a martingale part, i.e., the Doob-Meyer decomposition.h�X� � hX� � hX��h = h��h+ (hM�+h � hM� ) = h���� + �hM�where h�t 2 Rk is hFt�h measurable, and �hMt 2 Rk is a local martingale di�erence arraywith an (almost surely) �nite conditional covariance matrix. Further, to make our sumslook like integrals, we set �� = h, and �hM� � hM� � hM��h.The conditional covariance matrix of h�X� per unit of time is the k � k matrix h
� =[h
(ij)� ]. In other words, E(h�M� � h�MT� jhF��h) = h
���:h
� is hF��h measurable.Our interest is in estimating h
t when it randomly evolves over time. Just as the changein hX� can be decomposed into a drift component (i.e., a component that is predictableone step ahead) and a martingale component, so, we assume, can the change in h
� :�h
� = h���� + h�M��where h�� , the instantaneous drift in h
� , is hF��2h measurable, and hM�� is a k � kmatrix-valued local martingale with respect to the �ltration hF��h. Further,E(h�M�(ij)� � h�M�(kl)� jhF��2h) = h�(ijkl)���So h�� is hF��2h measurable. h�t and h�t are, respectively, the drift and variance per unitof time in the conditional variance process h
t. Since h
t is a k � k matrix, its drift h�tis as well. The \variance of the variance" process �� is a k � k � k � k tensor. As we seebelow, the more variable the h
t process is (as measured by h�t) the less accurately it canbe measured.The class of data generating processes encompassed in this setup is very large, including,for example, discrete time stochastic volatility models (e.g., Melino and Turnbull (1990)),5



di�usions observed at discrete intervals of length h, (e.g., Wiggins (1987), Hull and White(1987)), ARCH models, (e.g., Bollerslev, Chou and Kroner (1990)) and many random co-e�cient models (Chow (1984)).As is well known for standard regressions, the e�ciency of least squares covariancematrix estimates depends to a considerable extent on tail thickness of the noise terms (see,e.g., Davidian and Carroll (1987)). This is true for rolling regressions as well. To motivateour next bit of notation, suppose for the moment that the �hXt's were i.i.d., scalar drawsfrom a distribution with mean zero and variance 
. If we estimate 
 using T observations by
̂ = T�1 TXt=1 (�hXt)2, the variance of 
̂ is T�1 Var[(�hXt)2]. That is, the sample varianceof 
̂ depends on the fourth moments of the �hX 0ts. When h
t randomly evolves over time,we require an analogous measure of the conditional tail thickness of �hXt. Accordingly, wede�ne hB� , a k� k matrix-valued martingale by the following martingale di�erence array:4h�B� = h�1=2(h�M� � h�MT� � h
���):hB� is essentially an empirical second moment process with its conditional mean removedeach period to make it a martingale. We next de�ne the conditional variance process forhB� ; the k � k � k � k tensor process h�� withh�(ijkl)��� = E(h�B(ij)� � h�B(kl)� jhF��h):�(ijkl)t is closely related to the multivariate conditional fourth moment of �hMt:�(iiii)t = E[(h�Xi;t � h�i;t � h)4 � h
2(ii)tjhFt�h]= E[�hM4i;t � h
2(ii)tjhFt�h]:�(iiii)�=
2(ii)� is the conditional coe�cient of kurtosis less one of the ith variable at time � .If �Xi;t is conditionally normal, then �(iiii)� = 2
2(ii)� .We next de�ne h�(ijkl)� � corr(�hB(ij)� ;�hM�(kl)���� jhF��h):4The reason for the h�1=2 in the de�nition of B is to keep hB = Op(1). Thus, the notation will remindus the size of various integrals. In other words, for M and M�, we have the usual \size" condition thath�M2 = O(��), and h�M�2 = O(��), and now this also holds for the B process: h�B2 = h��� = O(��).6



h�t is the conditional correlation between the innovations in the empirical second momentprocess hB� and the innovations in the conditional variance process 
� . The behavior ofh�(ijkl)� is an important determinant of our ability to measure h
t accurately. To see why,suppose that h
t is generated by a diagonal multivariate GARCH model as in Bollerslev,Engle, and Wooldridge (1988). In this case h
t equals a distributed lag of the outer productof residual vectors and therefore h�(iiii)t = 1. In this case, rolling regressions can estimateh
t arbitrarily well, since �h
t is perfectly correlated with elements of �hXt�hXTt . I.e.,when we see �hXt this tells us all we need to know about the change in h
t. On the otherhand, suppose that h
t is generated by a di�usion observable at intervals of length h. Inthis case h�(ijkl)t = 0, and though �hXt�hXTt contains information about the level h
t, itin general contains no information about changes in h
t. The case where h� < 0 is a sortof \reverse GARCH" case, in which larger than expected residuals cause variance to drop.Our results are able to accommodate this case, though it seems unlikely to be practicallyrelevant. In general, however, the higher jh�(ijkl)tj, the more accurately measurable ish
(ij)t. Unfortunately, we will have to assume a value for � because we will see that it isnot identi�able.The estimator we will study ish
̂(ij)T �X� hw(ij)(��T )[h�X(i)� � h � h�̂(i)� ][h�X(j)� � h � h�̂(j)� ]; (5)where h�̂ is a estimate of h�, and h
(ij) is the ijth component of h
, h�̂(i) is the ithcomponent of h�̂, and hw��T is a k � k weighting matrix for which Phw(ij)(��T )�� = 1.For now both the conditional mean estimate h�̂t and the weights hw(ij)t as exogenouslygiven, though below we consider data-dependent selection of hw(ij)t.A special case of the above is the standard at{weight rolling regression motivated by thefollowing argument. E(�M)2=�� = 
, so it seems reasonable that if we average terms like�M̂2=�� , we should get a good approximation to 
. So, the rolling regression estimatorof 
 is de�ned as:h
̂T � [(n+m)h]�1 �=T+(m�1)hX�=T�nh [h�X� � hh�̂� ][h�X� � hh�̂� ]TThus the weights are equal over some region. So,hw(ij)� = 8<: 1(n+m)h �nh � � < mh0 otherwise (6)7



So, for example, when n = m = kh�1=2 for some constant k, (which when � = 0 willturn out to be the asymptotically optimal way of choosing a rolling regression) we see thathw��T �= h�1=2k�1 near T , and 0 far away from T , withPw�� = 1. Here m is the numberof leads and n is the number of lags. In a standard one-sided rolling regression, m is setequal to zero and hw(ij)t�T = 1=nh for T � nh � t < T and zero otherwise.When m = 0 and the weights are non-negative but otherwise unconstrained in (5), wehave a special case of the multivariate GARCH model of Bollerslev, Engle, and Wooldridge(1988). The method of treating conditional covariances as constant over blocks of time (e.g.,Merton (1980), Poterba and Summers (1986), French, Schwert, and Stambaugh (1987)) isalso easily accommodated: here w = 1=hK whenever t � T is in the same time block astime T and equals zero otherwise. K is the number of observations within the block.2.1 AssumptionsThe �rst assumption requires the �rst few conditional moments of hXt and h
t remainbounded with small changes over small time intervals as h! 0: This assumption essentiallyallows us to apply the central limit theorem locally in time.Assumption A The following 8 expressions are all Op(1):(i) sups;t2[T;T+h1=2] j�̂s � �tj(ii) supt2[T;T+h1=2] jh�(i)t � h�(i)T j(iii) h�T(iv) h
T(v) h�T (vi) h�T(vii) for some � > 0;E � jh�1=2h�M�T j2+����FT�2h�(viii) for some � > 0;E � jh�1=2h�BT j2+����FT�h� :Assumption A is not as formidable as its 8 parts appear. For example, if all theseprocesses are actually continuous semi-martingales, then Assumption A will hold with onlynon-explosiveness conditions. This is made precise in the following de�nition and followingrestatement of Assumption A.De�nition We will call hX� a discretized continuous semi-martingale if there exists a pro-cess 0X� , such that hXih = 0Xih and 0X� is a continuous semi-martingale with di�erential8



representation of d0X� = 0��d�+0
1=2� d0W� , where both 0�� and 0
� are continuous semi-martingales with 
 positive de�nite [a.s]. Further, d0
� = 0��d� + 0��d0W 0� , where both0�� and 0�� are continuous semi-martingales, and W� and W 0� are multivariate Brownianmotions.Assumption (A') hX� is a discretized continuous semi-martingale for which there existsa random variableM with �nite mean such that for all � � K (K �nite) the following holds[almost surely]: j0�� j+ j0
� j+ j0�� j+ j0�� j+ j0�� j �M . Also assume h�̂� � 0.From standard arguments Assumption A0 can be shown to imply Assumption A. Thus,we see that Assumption A is more of a regularity condition rather than a restrictive as-sumption.Assumption B h�� ; h�� and h�� change slowly over time. That is to saysupT���T+h1=2 jh�� � h�T j = op(1);supT���T+h1=2 jh�� � h�T j = op(1); andsupT���T+h1=2 jh�(ijkl)� - h�(ijkl)T j = op(1):Assumption B tells us that the \hyper-parameters" are regular enough that they canbe estimated. Again this isn't a very restrictive assumption in the sense that these termswould naturally be Op(h1=2) if �;�, and � followed SDEs.Assumption C The diagonal elements of h�� and h�� are non-vanishing. That is to say8i 8j: 1=h�(ij ij)T = Op(1), and 1=h�(ijij)T = Op(1).Assumption C tells us that we can get a non-degenerate asymptotic distribution atthe natural rate of convergence. If assumption C were dropped, our asymptotic variancecalculation would still hold. But the results might be trivial in the sense that we get anasymptotic normal with zero variance. Assumption C avoids this.h�t; h�̂t, and h�t drop out of the asymptotic distribution of the measurement error in theconditional covariance estimate produced by the rolling regression{i.e., these terms are ofonly second order importance in determining the measurement error. In fact, if we explodeh�t; h�̂t, and h�tto in�nity as h ! 0 at a su�ciently slow rate, these conditional momentsstill drop out of the asymptotic distribution of the measurement error.9



De�nition hT�and hT � are the \start" and \end" times of the rolling regression. Thatmeans hw��T = 0 for � < hT� or � > hT �.Note it is not required that hw��T be non-zero between T� and T �. This will be usefulwhen considering two di�erent weights. T� will then typically be the earlier of the startingtimes and T � the later of the ending times. The next assumption restricts the behavior ofthe weights hw��T :Assumption D hT � � hT� = O(h1=2);T �X�=T�;T�+h;::: hw(ij)��T�� = 1; andsup� (jhw(ij)T j) = O(h�1=2):Assumption D requires that the total number of lags and leads used in the rollingregression is going to in�nity at rate h�1=2, though the time interval over which the weightsare nonzero is shrinking to 0 at rate h1=2. Assumption A guarantees that changes in h
tare small over small time intervals: As in the illustration at the beginning of this section,as h ! 0 the rolling regression generates its conditional covariance estimate h
t usinga growing number of residuals generated over a shrinking period of time. Unfortunately,however, Assumption D also requires that the number of residuals assigned nonzero weightsis bounded for each h. This accommodates the ARCH(p) model of Engle (1982) with pgrowing at rate h�1=2 as h! 0, but formally excludes the GARCH(p,q) model of Bollerslev(1986). We can, however, approximate GARCH models to arbitrary accuracy by consideringARCH(p) models for arbitrarily large but �nite (for each h) order.Typically w(ij)��T � 0 but this is not required. Assumption D also requiresPw(ij)��T�� =1. Interpreting the rolling regression as a multivariate GARCH model, this corresponds toan IGARCH (\Integrated GARCH") model{ see Engle and Bollerslev (1986). For the the-orems we can relax this condition to only assume that Pw(ij)��T�� = 1 + o(h1=4). Forintuition on why IGARCH is approached as h! 0, see Nelson (1992).De�nition h	(ij)x � 8>>>><>>>>: 1X�=x+h;x+2h::: hw(ij)��� if x � 0� xX�=�1 hw(ij)��� if x < 0 :10



Note: h	x is only de�ned if x=h is an integer. This is like an integral of hw� in the sensethat �	(x)=�x = �hwx. For example, in the case of the at weight rolling regression fora univariate process h	s�T = (hT � � s)Is�T � (s� hT�)Is<ThT � � hT � ;where hT � is the right end point of the rolling regression and hT� is the left end point.De�ne the following sums, hSww � h1=2X� hw2���hS		 � h�1=2X� h	2���hSw	 � X� hw� � h	���In the multivariate case, w� is replaced by w�(ij). So, hSww is k � k � k�k. So, these sumsare actually tensors. For example hSwij	kl �P� hw�(ij)�h	�(kl)�� .Finally, de�ne the normalized measurement error processhQt � h�1=4(h
̂t � h
t)Its conditional covariances are asymptotically the k � k � k � k tensor process hC� withelements given byhC(ijkl)t � hSwijwkl � h�(ijkl)t + hS	ij	kl � h�(ijkl)t ++ hSwij	kl � h�(ijkl)tqh�(ijij)t � h�(klkl)t ++ hSwkl	ij � h�(klij)tqh�(klkl)t � h�(ijij)tWhich in the scalar case is just (where the `h' has been deleted from C; �;�; �;	, and S)Ct � Sww�t + 2Sw	�tp�t�t + S		�t (7)2.2 Main Convergence TheoremsTheorem 1 (Representation:) If Assumptions A & D hold, thenhQ(ij)T � h�1=4(h
̂(ij)T � h
(ij)T )= h1=4X� hw��Th�B(ij)� + h�1=4X� h	��T h�M�(ij)� + op(1)11



Theorem 2 (Asymptotic Distribution:) If Assumptions A{D hold, thenhQT jFT� is asymptotically distributed N(0; hCT�): (8)PROOFS: See the Appendix.The matrix normal distribution in Theorem 2 has the obvious interpretation {i.e., theasymptotic covariance of hQ(ij)t and hQ(kl)t given FT� is C(ijkl)T�. Alternatively, using anappropriate sense of a tensor square-root, equation (8) says, C�1=2Q D! N(0; 1) where 1is the tensor identity.To illustrate the application of Theorem 2, consider a multivariate rolling regression withat weights. Assume that hnij = n0h�1=2, and hmij = m0h�1=2. This is a restricted formof a rolling regression in which all of the windows are the same size. For all i and j the sameweighting is then used. In other words, hw� = h1=2(n0 + m0)�1If� 2 [�n0h1=2; m0h1=2]g.Thus, Assumption D is satis�ed. So, in this case, (the following approximations are easy tosee if one thinks of each sum as being approximated by an integral):h�1=2	(h1=2s) = (m0 � s)Is�T + (s� n0)Is<Tm0 + n0Sww = Xw2sh �= 1m0 + n0S		 = X	2sh �= m30 + n303(m0 + n0)2Sw	 = Xws	sh �= m0 � n02(m0 + n0)Because of our assumption that all wij are the same, we don't need to distinguish betweenSwijwkl and just call all of them Sww. Likewise for Sw� and S		. We can now computethe variance of 
̂ij . Then, (where to simplify the equations we have taken: h�(ijij)T� =�; h�(ijij)T� = �; h�(ijij)T� = �)C(ijij)T� = �Sww + 2p���Sw	 +�S		= �m0 + n0 +p���m0 � n0n0 +m0 +� m30 + n303(n0 +m0)2 (9)Consider the three components of the asymptotic covariances in (9): the �rst term,�Sww , would be present even in the i.i.d. case. This term reects sampling error, and canbe made arbitrarily small by making n0 +m0 su�ciently large. Indeed, if the conditionalcovariance matrix h
t were constant, the other terms in C(ijkl)T� would vanish, and letting12



n0+m0 be in�nite would be optimal. The third term, �S		, reects the variability in h
t.This term can be made arbitrarily small by making n0 +m0 su�ciently small: the smallerthe window over which the rolling regression is conducted, the more like a constant h
tis within the window. As indicated in our discussion of h�, the second term, p���Sw	,comes from the covariance between the �rst and last terms. This term drops out when thedata are generated by a di�usion but not, for example, when the data are generated by aGARCH model. This term also controls how much information about h
� is in the \past"residuals as opposed to the future residuals.2.3 Consistent Estimation of Nuisance ParametersTo construct correct asymptotic con�dence intervals, we must have consistent estimates ofthe components of the conditional covariance of the measurement error hQt, namely h�t; h�t,and h�t. Sometimes some of these are known a priori: for example, when fhXt; h
tg isgenerated by a di�usion process, h�(ijkl)t ! 0; h�(iiii)t=h
2(ii)t ! 2 and �ijkl ! 0 otherwiseas h ! 0, thus leaving only �t to estimate. In more general circumstances, however, theyall must be estimated.We next consider estimation of h��and h�� .Since we have only the most indirect methods of obtaining information about theseparameters, we will need to assume that the processes under consideration are \regular"over a slightly longer interval. To do this we will use the following uniform convergenceidea. We will say that XT = op(1) holds uniformly over T 2 [T 0; T 0 + Khh1=2] if for all� > 0, supT 2 [T 0; T 0+Khh1=2] P (jXT j > �)! 0 as h! 0:Assumption E Assume there exists a function Khsuch that Kh !1 as h! 0 such thatAssumption A holds uniformly over T 2 [T 0; T 0 +Khh1=2].By way of example, consider assumption A part (iii). It tells us that �T is small:jh�T j = Op(1). In other words, Assumption A-iii by itself says: 8� > 0, 9M such thatP (jh�T j > M) < � for su�ciently small h. Under Assumption E, we have the followingstronger statement:8� > 0, 9M such thatsupT2[T 0;T 0+Khh1=2]P (jh�T j > M) < �13



for su�ciently small h. We now need to assume that our \targets" don't change very muchover short time intervals. In other words, we need a stronger version of Assumption B.Assumption F For the Kh in assumption E,sup� 2 [T 0; T 0+Khh1=2] jh�� � h�T j = op(1)sup� 2 [T 0; T 0 +Khh1=2] jh�� � h�T j = op(1)sup� 2 [T 0; T 0 +Khh1=2] jh�� - h�T j = op(1)Assumption (F') For the Kh in Assumption E, (in the univariate case only)sup�2[T 0;T 0+Khh1=2 ] jh��=h
2� � h�T =h
2T j = op(1)sup�2[T 0;T 0+Khh1=2 ] jh��=h
2� � h�T=h
2T j = op(1)sup�2[T 0;T 0+Khh1=2 ] jh�� - h�T j = op(1)Assumption F trivially implies Assumption B. That F' implies Assumption B followsfrom the \near" constancy of 
T over intervals of length h1=2. Assumption F is more naturalfor the proof of our convergence theorem, and is easily understood in the multivariatesetting.In the univariate case, the advantage of using �=
2 and �=
2 instead of � and � re-spectively, is that it may be more believable that the \shape" parameters are constant thanthe parameters themselves: Constant �=
2 is equivalent to constant conditional kurtosisof the increments in hXt. When hXt is generated by a di�usion, for example, �=
2 = 2.Constant �=
2 is equivalent to ln(h
t) being conditionally homoskedastic. Many ARCHand stochastic volatility models e�ectively assume this (see Nelson and Foster (1994)) and,as we see in the empirical application below, this homoskedastic ln(h
t) seems a reasonableapproximation for U.S. stock prices.In the univariate case, these assumptions are equivalent in the sense that a process thatsatis�es F for someKh will satisfy F' for some otherKh (and visa versa). But if one of theseK 0hs is signi�cantly larger than the other, it will allow the use of more data in estimating� and �. 14



We will now outline estimators for � and �. First de�ne a matrix f�(�) which can bethought of as being 
̂� � 
̂��� for an appropriately de�ned 
̂:f�(�) = �+�h1=2Xs=�;�+h;:::h�1=2(�hXs � h�̂s�s)(�hXs � h�̂s�s)0=��� ���h1=2Xs=�;��h;��2h;:::h�1=2(�hXs � h�̂s�s)(�hXs � h�̂s�s)0=��̂ and �̂ can now be de�ned as:�̂(ij kl)T = �2Kh T+Knh1=2X�=T;T+h;:::f(ij)�(�)f(kl)�(�)� �̂(ijkl)T �2=3 (10)�̂(ijkl)T = 32�Kh T+Knh1=2X�=T;T+h;:::f(ij)�(�)f(kl)�(�)� 3�̂(ijkl)T =�2 (11)In the case where � � � these estimators are more intuitive because the \corrections" aresmall and only the sums themselves need be considered. To actually get the estimators, wehave to solve the simultaneous equations (10) and (11). These estimators are designed towork with Assumption F. The following theorem shows they achieve this goal.Theorem 3 (Consistency) Under Assumption D, E, and F, both �̂T and �̂T are consis-tent pointwise in T.Proof: See the Appendix.For the scalar case, Assumption F' should hold over a longer interval and so \better"estimates of � and � should be available. Estimators appropriate for this situation will nowbe given. The de�nition of f� is notationally simpler in the scalar case:f�(�) = �+�h1=2Xs=�;�+h;:::h�1=2(�hXs � h�̂s�s)2=� ����h1=2Xs=�;��h;:::h�1=2(�hXs � h�̂s�s)2=�Now modify (10) and (11) as follows:�̂T = 
̂2T �2Kh T+Knh1=2X�=T;T+h;:::f�(�)2=
̂2� � �̂T �2=3 (100)�̂T = 3
̂2T2�Kh T+Knh1=2X�=T;T+h;:::f�(�)2=
̂2� � 3�̂T =�2 (110)15



These are the estimators that we actually use in the empirical example.We will see from the simulations that the following estimator appears to do somewhatbetter for �̂ in the scalar case:�̂T = 3
̂2T2�Kh T+Knh1=2X�=T log(
̂(T + �h1=2)=
̂T )2 � 3�̂T=�2; (12)where 
̂ is taken to be a 1 sided rolling regression of length �h1=2. Eq. (12) can be seen tobe close to (11') if a one term Taylor series for the log is used.Without further assumptions on the processes Xt and 
t it is impossible to estimateh�(ij kl)t. In order to prove this we have to �nd two models which have identical observablerandom variables (i.e. the distributions for the Xt's are the same) but have di�erent valuesfor the parameter h�(ij kl)t. Luckily Shephard (1994) does exactly this. He starts outwith a stochastic volitility model which by construction has a � of zero. In other words,
t = Var(XtjFt�h) where F is the �-�eld generated by both the observed state variableX and the unobservable latent variable 
. He integrates out this latent state variable andgenerates a GARCH model. This is equivalent to looking at 
0t = Var(XtjGt�h) where Gis the �-�eld generated only by the observable state variable X . In this new model, � = 1.Since only the process X is observed, it is impossible to distinguish between these twomodels. Thus, � is unidenti�able since it changes with the de�nition of the �-�eld.3 E�ciency and OptimalityThroughout this section, we will use various techniques of estimating a particular 
ij . Thus,we will think of i; j as �xed. We will call h�(ijij)T� = �; h�(ijij)T� = �; h�(ijij)T� = �. Further,because we will want to compare windows of di�erent lengths, we will take our conditioningtime to be T� = T � kh�1=2 for some su�ciently large k.3.1 Optimal Lead and Lag Lengths in Standard (at-weight) Rolling Re-gressionsConsider again the example of the standard rolling regression in the previous Section, inwhich, for some nonnegative n0 and m0 the weights are given by hwt = h1=2(n0 + m0) �I(t 2 [�n0h1=2; m0h1=2]). This weighting scheme is of special interest, since it is mostfrequently encountered in practice. The asymptotic standard error for the ijth element of16



the measurement error in the conditional covariance matrix is given in (9). In other words,SE(
̂ij)2 = (bias)2 + Var(
̂ij) �= 02 + Cij ij�= �m0 + n0 +p���m0 � n0n0 +m0 +� m30 + n303(n0 +m0)2 :Where the �rst equality follows by de�nition of the mean squared error, and the approxi-mation follows from our Theorem 2.Theorem 4 (at-weight)� The asymptotic variance-minimizing backward looking at-weight rolling regression(i.e., m0 = 0) is given by setting n0 = q3�� . The asymptotic measurement errorvariance (see (9)) achieved by this choice of m0 and n0 is (2� �)q��3 .� The asymptotic variance-minimizing forward looking at-weight rolling regression (i.e.,n0 = 0) is given by setting m0 = q3�� . The asymptotic measurement error varianceachieved with this choice of m0 and n0 is (2 + �)[��=3]1=2.� When � > (3=4)1=2, the one-sided backward-looking at-weight rolling regression isasymptotically optimal in the class of at-weight rolling regressions. When � <�(3=4)1=2, the optimum is a one-sided forward-looking rolling regression. When j�j �(3=4)1=2, the asymptotic optimum is a two-sided rolling regression withn0 = q3(1� �2)�=�+ �q�=�, and (13)m0 = q3(1� �2)�=�� �q�=� (14)The minimized asymptotic variance when j�j � (3=4)1=2 is p��(1� �2)=3.Proof: See the Appendix.Note the role of h� in determining the optimal weighting scheme: when GARCH gener-ates the data, h� = 1 and all information used by the rolling regression about h
t is in thelagged residuals. The closer h� is to 1 therefore, the more weight is optimally put on lagged(as opposed to led) residuals.The h� = 0 case is also instructive: here the optimal weighting scheme is two-sidedwith equal window lengths on each side. This cuts the asymptotic variance exactly in halfcompared with the optimal one-sided rolling regression.17



3.2 Optimal Weighted Rolling RegressionsAlthough at-weight rolling regressions are widely used, they are generally non-optimal:Theorem 5 (Optimal weights) De�ne � and � as in (7) and let � � p�=�.� The asymptotic variance-minimizing backward looking (i.e., all the weight is on laggedresiduals) weight function 0wt is given by Ift<0g�e�t. This achieves an asymptoticmeasurement error variance of p��(1� �).� The asymptotic variance-minimizing forward looking weight function 0wt is given byIft>0g�e��t. This achieves an asymptotic measurement error variance of p��(1+�).� The asymptotic variance-minimizing weight function 0wt is given by0ws = 8<: p�e��s for s � 0(1� p)�e�s for s < 0; (15)where p = (1 � �)=2. This achieves an asymptotic measurement error variance of(1=2)p��(1� �2).Proof: See the Appendix.shorten, kill, etc!Others (Geno-Catalot, Laredo and Picard (1992), Corradi and White (1994), Banon(1978), Dohnal (1987) and Florens-Zmirou (1993)) have estimated 
t by non-parametricmethods. Their estimators often achieve better rates of convergence then we do since theyassume that 
t is much smoother than we assume it to be. On the other hand, we can oftenhandle a more general situation than they can. So, the choice of estimator and its resultingrate of convergence depends on which assumptions are appropriate.Note that the estimators recommended Theorem 5 violate our assumptions in the sensethat 0ws does not have compact support. Of course the recommended 0ws can be arbitrarilywell approximated by a w which does have compact support.Further notice that in terms of forecasting (i.e. backwards looking) the optimal weightingis the same regardless of the value of �. Thus even if � can not be estimated, optimal forecastsfor 
 are still available. Of course, we wouldn't know how accurate these forecasts in factare!Another popular strategy for estimating conditional covariances{chopping the data upinto short blocks and estimating covariances as if they were constant within the blocks18



(see, e.g., Merton (1980), Poterba and Summers (1986), French, Schwert, and Stambaugh(1987)){is a special case of the two-sided at-weight rolling regression. Suppose the blockis composed of a total of K observations. At the left (right) end point of the block, thecovariance matrix estimate is a one-sided rolling regression using K led (lagged) residuals.Between the two end points, the estimate is a two-sided rolling regression. If we set K �h�1=2k0, then the asymptotic measurement error variance at a point a fraction � throughthe block (0 � � � 1) is obtained from (9) by setting n0 = k0� and m0 = k0(1� �):Ĉ = �=k0 + �p��(1� 2�) + (�k0=3)[�3+ (1� �)3] (16)which, when j�p��k0j � 1=2, is minimized when � = 1=2� �p�=�k0, lending a bow shapeto the con�dence intervals.An obvious implication of Theorem 5 is that at-weighting schemes such as one or two-sided rolling regressions or block-constant estimators are ine�cient. Unfortunately, how-ever, constructing the asymptotically e�cient weights requires consistent estimates of thenuisance parameter processes f�tg; f�tg, and f�tg. Can we construct dominating weightingschemes without knowing f�tg; f�tg, and f�tg? The answer, it turns out, is yes:Theorem 6 (Dominating at weights) For every i and j, de�ne the weights hw(ij)��Tby (6) (i.e., we use n = n0h�1=2 lagged residuals and m = m0h�1=2 led residuals). De�nean alternative set of weights hw�(ij)��T byhw�(ij)��T = 8<: 31=2(n0 +m0) exp[�31=2h1=2(T � �)=m0] if � > T31=2(n0 +m0) exp[�31=2h1=2(T � �)=n0] if � < T. (17)Then the asymptotic variance obtained using hw�(ij)��T is lower than the asymptotic varianceobtained by using hw(ij)��T for any �; �, and �, withĈ � Ĉ� = (1�p3=2) (  (0�)2(�=m0 + �m0=3) +  (0)2(�=n0 +�n0=3) ) > 0:The idea behind Theorem 6 is simple: we leave the total share of the weight put on ledand lagged residuals unchanged, but alter the shape of the weights on each side of time Tfrom a block-shape to an exponential decline.There is another natural way to dominate a block-constant estimation scheme, providedwe are willing to consider average, rather than pointwise, measures of accuracy: integratethe measurement error variance (16) across the block (i.e., integrate (16) over � from 0 to19



1), yielding an average measurement error variance across the block of (\b.c." is for \blockconstant") Ĉb.c. = �=k0 + (�k0=6) Now consider a at-weight, two-sided rolling regressionusing K=2 = :5koh�1=2 leads and the same number of lags. By (9), this achieves an averagemeasurement error variance of (\t.s." is for \two sided") Ĉt.s. = �=k0 + (�k0=12), whichis strictly smaller whenever � > 0, regardless of the values of k0; �, and 
. Of course,this two-sided rolling regression is itself dominated by an exponentially weighted rollingregression constructed as in Theorem 6.If we are willing to assume that � = 0, as it would be, for example, if the data aregenerated by a di�usion observed at discrete intervals, further dominance relations follow:in particular, a one-sided rolling regression using, say, n lags and no leads has exactly twicethe asymptotic variance of a rolling regression using n lags and n leads. The resulting two-sided rolling regression is itself dominated by an exponential-weighted rolling regressionconstructed as in Theorem 6.******* Figure 1 near here *********Several of the dominance relations are illustrated in �gure 1. Using numbers from theempirical application in Section 5, �gure 1 plots the ratios of the standard deviation ofmeasurement errors in S&P 500 volatility estimates using various estimation schemes tothat obtained using the optimal two-sided exponentially weighted estimator. The graphwas constructed under the assumption that � = 0. In switching from the optimal two-sided exponentially weighted estimator to the optimal at-weight estimator, the standarddeviation of the measurement error rises about 7%. In switching from the optimal-twosided to the optimal one-sided estimate, the standard deviation goes up by a factor of p2.The bow-shaped pattern attained by the block-constant scheme of French, Schwert, andStambaugh (1987) and of Poterba and Summers (1986) is clear in �gure 1: when � = 0,this estimate does relatively well mid-month but poorly at the beginning and the end of themonth. Switching from this block constant scheme to using a two-sided rolling regressionwith the same number of residuals (as proposed above) achieves a standard error equal tothe (minimized) mid-month standard error.If standard errors are estimated for the variance estimate under the false assumptionthat the covariance matrix truly is constant within blocks, only the sampling error term�=k0 appears, giving an unrealistically optimistic picture of the accuracy of the estimatedcovariance matrix. This is illustrated in �gure 2.******* Figure 2 near here *********20



3.3 The Relation between the Regularity Conditions and the OptimalityResultsClearly there are relaxations in the regularity conditions which would invalidate the opti-mality results. For example, suppose that within each month, volatility is constant, witheach month's volatility an i.i.d. draw from some distribution. Presumably in this casethe block-constant estimation scheme of Poterba and Summers (1986) and French, Schwertand Stambaugh (1987) would dominate two-sided exponentially declining weights. This,however, would violate our regularity conditions, which (asymptotically) ruled out discretejumps in h
t.A more subtle example was suggested to us by John Campbell: suppose volatility fol-lows a moving average process in which volatility shocks persist{with constant weight{forsome period and then suddenly die out. In this case, a at-weight rolling regression wouldpresumably dominate an exponential weighting scheme. (This is obviously true, for exam-ple, if volatility follows Engle's (1982) ARCH(p) process with equal weights on p laggedresiduals.) Here discrete jumps are not the problem, since it is easy to show that sucha moving-average scheme is consistent with a continuous sample path for volatility in thelimit as h! 0. For example, for some � > 0, set 
t = exp(Wt �Wt��).Though it may not be as obvious, this scheme is also ruled out by our regularity con-ditions, which not only assumed that the sample paths of the state variables were (asymp-totically) continuous, but also that over short time intervals, the unpredictable componentof changes in the state variables swamps the predictable component5{i.e., the noise swampsthe signal for su�ciently small h. In the moving average example just given, the noise andthe signal are of the same stochastic order as h ! 0. Our regularity conditions e�ectivelyassume that shocks to the state variables decay either gradually or not at all. This meansthat over very short time intervals, the movements in h
t and hXt look like random walks.Since our estimates of 
t are formed over short intervals, and since Xt and 
t behaveasymptotically like random walks over such short intervals, it should not be too surprisingthat our optimal weighting scheme is two-sided exponential: this is the weighting schemeobtained in the literature on random coe�cient models under the assumption of a Gaussianrandom walk (independent of the right-hand side variables) for the regression coe�cients{5A continuous time semimartingale is decomposable (by de�nition) into the sum of a martingale (whichmay be of unbounded variation, and so very rapidly oscillating) and an instantaneously predictable compo-nent of bounded variation (which is much more slowly varying over short time intervals).21



see, for example, Fisher and Kamin (1985).If the regularity conditions asymptotically ruling out discrete jumps in hXt are relaxed,our results are invalidated: suppose, for example, that hXt is generated by a jump process,say a poisson, observed at discrete intervals of length h. For each T , the normalized residualh�1=2[hXt � hXt�h] converges in probability to zero as h ! 0, yet its conditional variancedoes not vanish to zero with h. Clearly a rolling regression using O(h1=2) window widthscannot consistently extract this variance, since unless there is a jump within the window(which happens with vanishingly small probability as h goes to zero), the variance estimateproduced by the rolling regression is 0! The problem here is that the normalized residualsh�1=2[hXt�hXt�h] are too thick tailed (i.e., they are nearly always small but are occasionallyenormous { i.e. � =1). This prevents us from applying a law of large numbers and a centrallimit theorem locally in time to extract h
t from the squared increments in hXt.We have also assumed that our variance process, 
, does not have jumps. In this casethough, the problem becomes in some sense easier instead of harder. If the variability of 
is contained in jumps, then \most of the time"
 is relatively constant. So, long windowscan be used for the rolling regression. Unfortunately, the asymptotic variance will still bein�nite, but this is now due to a few large errors. In other words, most of the time, wewill be getting very accurate estimates, but when a jump occurs, we get asymptotically anin�nite error.4 Estimating conditional betasIn many applications, especially in �nance, conditional betas are of greater importance thanconditional variances or covariances. Suppose that �hX1;t is the return on some marketindex, while �hXj;t is the return on some other asset or portfolio. The true and estimatedconditional betas of asset j with respect to the market index are de�ned respectively ash�j;t � h
1;j;t=h
1;1;t, and h�̂j;t � h
̂1;j;t=h
̂1;1;t:Since the estimated beta is a di�erentiable function of the asymptotically normal covarianceand variance estimates h
̂1;j;t and h
̂1;1;t, it is also asymptotically normal (see, e.g., Sering(1980, Section 3.3, Theorem A), with mean zero and asymptotic varianceh
̂�21;1;t[hC(1j1j)t + h�2j;thC(1111)t� 2h�j;thC(111j)t]: (18)22



We next consider optimality, assuming, for simplicity, that the same weights are used informing both h
̂1;j;t and h
̂1;1;t. This corresponds to using weighted least squares (regressing�hXj;�on �hX1;�) to estimate h�j;t. Substituting from (7) into (18) yieldsAVARt(h�1=4[h�̂j;t � h�j;t]) = [��Sww + ��S		 + 2��q����Sw	] (19)where �� � (h�(1j1j)t + h�2j;th�(1111)t� 2h�j;th�(111j)t)=h
̂21;2;t; (20)�� � (h�(1j1j)t+ h�2j;t h�(1111)t� 2 h�j;t h�(111j)t)=h
21;1;t; (21)and (deleting the h and t subscripts to improve legibility)�� � �1j1jp�1j1j�1j1j+�2�1111p�1111�1111���111jp�1111�1j1j���1j11p�1j1j�1111
211p����As in Section 2, the three terms are easily interpreted: �� is the sampling error variance,�� is the instantaneous conditional variance of the increments in h�j;t. The 2��p���� termarises from the covariance between the other two terms. Again, this term is zero for di�usionmodels and many stochastic volatility models. Note that (19) has the same form as (9) ifwe substitute �� ;��, and �� for �;�, and �. Apart from these substitutions, the optimalityand dominance results of Section 3 are una�ected. In particular, the asymptotically optimalweights are two-sided and exponentially declining, just as derived in the random coe�cientsliterature under the assumption that betas follow random walks independent of returns onthe market index.5 An application: Volatility on the S & P 500To illustrate the application of our results, we estimate the conditional variance of continu-ously compounded daily capital gains on the S&P 500. Our data extend from January 1928through December 1990. Poterba and Summers (1986) and French, Schwert, and Stam-baugh (1987) employed the same series (up to 1985) in their work. The series exhibits smallbut statistically signi�cant serial correlation of about 6% at one lag, presumably caused bythin trading of the stocks in the underlying index{see, e.g., Scholes and Williams (1977).There is little serial correlation at longer lags. Since this serial correlation is not of interestto our application, we pre-whitened the series with an AR(1). Another `nuisance' aspect ofthis data is the contribution of non-trading days to variance: i.e., stock volatility is typicallyhigher following weekends and holidays, since the information arriving during the periodof market closure must be reected in asset prices when the market re- opens. (See, e.g.,23



French and Roll (1986).) Nelson (1989) estimated that each non-trading day adds 22.8%to the variance of the S&P 500 on the next trading day. Accordingly, we divide each of thepre-whitened capital gains �t by (1 + :228 �Nt)1=2, where Nt is the number of non-tradingdays preceding trading day t. The transformed series is plotted in �gure 3.******* Figure 3 near here *********As noted earlier, French, Schwert, and Stambaugh (1987) employed a block-constantestimation strategy for the variance. They noted that the resulting 
̂t series is skewed tothe right, and that the variance of the innovations in 
̂t is an increasing function of 
̂t.French, Schwert, and Stambaugh took the log of 
̂t and found that this transformationadequately stabilized the variance. This is apparent in �gure 4,******* Figure 4 near here *********which plots the log of a simple at-weight rolling regression with a window length of 25 dayson each side. We therefore make the simplifying assumption that ln(
t) is conditionallyhomoskedastic (i.e., �t = �
2t ) . We also make the simplifying assumptions that conditionalkurtosis is constant (i.e., �t = �
2t ), and that �t = 0, i.e., stochastic volatility or di�usionrather than GARCH as the data generating process. These assumptions allow us to setKh =1 in Theorem 3. We then formed initial conditional variance estimates using two-sided at-weight rolling regressions. From these initial variance estimates, we created estimates of� and � using the method of Theorem 3. These estimates in turn implied optimal n andm values (n = m) for two-sided rolling regressions through formulas (13) and (14). Wethen iterated this procedure, at each stage using the \optimal" n and m suggested at theprevious step until the procedure converged. (This occurred very rapidly, since for m + nvalues below 52 a higher value was suggested, while for n+m above 54 a lower value wassuggested. We settled on a window length of 52.) The estimated � and � values were 2.72and .0120, respectively, implying through Theorem 5 an optimal exponential decay rate of� = :0665 for a two-sided exponentially weighted rolling regression.6To gauge the reliability of our asymptotic approximations, we performed 600 replicationsof the following experiment calibrated to the S&P 500 data: First, we generated 168856To gauge the importance of our pre-whitening and non-trading days adjustment, we repeated the esti-mation procedure using the raw (i.e., unadjusted) capital gains data. The results changed very little: theestimated � and � were respectively, 2.668 and .0124, and the optimal m + n and exponential decay ratewere 51 and .068 respectively. 24



observations of ln(
t) and �Mt asln(
t) = �:4246 + :9944 � [ln(
t�1) + :4246] + z2;t (22)�Mt = 
1=2t � z1;t (23)where z1;t, and z2;t are mutually independent and i.i.d., with z1;t distributed as a Student'st with 12 degrees of freedom, mean 0 and variance 1 and z2;t is N(0; :0120). The degreesof freedom of the Student's t distribution was selected to match the estimated conditionalkurtosis from the S&P 500 data. The variance of z2;t was selected to match the estimateof � for the S&P data. The population mean of ln(
t), which was -.4246, matched thesample mean of the �tted ln(
̂t). The slow mean reversion (.9944) was selected to matchthe unconditional variance of ln(
t) to the sample variance of the �tted ln(
̂t) plus thevariance of (ln 
� � ln 
̂� ).For each replication, we repeated precisely the same estimation procedure we had appliedto the S&P data. Tables 1 & 2 below report means and standard deviations of the estimatedparameters in the simulations. Standard errors (i.e., sample standard deviations divided bythe square root of the number of simulations) are given in parenthesis.Mean ofEstimatedCoe�cient ActualCoe�cient SampleStandardDeviation� 0.01051(0.00005) 0.0120 .0012� 2.480(0.003) 2.75 .082Table 1: Using equation (12)The estimates for both � and � are downward biased (by 1.2 and 3.3 standard deviationsrespectively in table 1 and 5.1 and 2.5 standard deviations in table 2). The width of theasymptotic con�dence intervals, the optimal m + n etc., are functions of p�=�. The biasin this ratio is quite small{for example the optimal m+ n for two-sided rolling regressionsis given by (13) and (14) as (12 � �=�)1=2 = 52:4 for the simulation. The mean estimatedoptimal m+ n was 53 with a standard deviation of 3.6 (using equation 12 it was 64� 4:3).Our estimates of (�=�)1=2 were close despite the biases in both � and �. Since � and � arebiased in the same directions, the biases partially o�set in (�=�)1=2. It is also worth noting25



Mean ofEstimatedCoe�cient ActualCoe�cient SampleStandardDeviation� 0.007(0.001) 0.0120 .00088� 2.527(0.004) 2.75 .088Table 2: Using equation (11')that the asymptotic standard deviation of the measurement error achieved by the optimalat-weight or exponentially weighted rolling regressions is proportional to (��)1=4. Thismeans that measurement errors in � and � must be quite large to have much e�ect on theaccuracy of the con�dence intervals. For example, getting � wrong by a factor of 2 throwso� the con�dence intervals by only about 19%. Tables 3 and 4 compare the asymptoticversus actual coverages in the measurement error, giving the proportion of measurementerrors falling between �1;�2, and �3 estimated asymptotic standard deviations, alongwith the standard errors. The asymptotic con�dence bands are slightly too narrow, but notdrastically so. StandardDeviations MeanCoverage inSimulation AsymptoticCoverage1 0.6393(0.0007) 0.68272 0.9306(0.0004) 0.95453 0.9929(0.0001) 0.9973Table 3: Using equation (12)******* Figure 5 near here *********Figure 5 plots 95% con�dence bands. We used the delta method to transform ourasymptotic distribution for h�1=4(
̂� 
) into an asymptotic distribution for h�1=4(ln 
̂ �ln 
). This, combined with our assumption that �t = � � 
2t and �t = �
2t implies that thewidth of the con�dence bounds in a log plot is constant, so the extension from �gure 5 to26



StandardDeviations MeanCoverage inSimulation AsymptoticCoverage1 0.5915(0.0008) 0.68272 0.8991(0.0006) 0.95453 0.9848(0.0002) 0.9973Table 4: Using equation (11')con�dence bounds for the whole sample is immediate.******* Figure 6 near here *********Figure 6 is analogous to �gure 5, except that it uses simulated data, and plots the true(simulated) 
1=2t along with the �2 standard deviation con�dence bounds. Overall, theasymptotic approximation performs tolerably well in the simulations using equation (11')and extremely well using (12).6 ConclusionWhile this paper has, we believe, shed new light on rolling regressions as conditional varianceand covariance estimators, much work remains. For example, in tests of asset pricingtheories the link between conditional means and conditional covariance matrices is usuallycrucial. As we have seen, conditional covariances can be accurately measured using highfrequency data (i.e., taking h to zero). Unfortunately, estimating conditional means requiresa long span of data as opposed to a high observation frequency, see e.g., Merton (1980).Since the asymptotic results developed in this paper are pointwise in time, they do notadequately equip us to study the joint evolution of conditional means and covariances overtime.A second limitation is our consideration only of unconstrained linear regression to com-pute the estimated conditional covariance matrix. Constraints on the conditional covariancematrix (e.g., on the eigenvalues or eigenvectors) are likely to prove important in dynamicfactor analysis or principle components.Finally, as we have seen, conditionally thick-tailed processes reduce the e�ciency of27



least squares based procedures such as rolling regressions. It should be possible to adaptthe methods for robust estimation of covariance matrices developed for the i.i.d. case (see,e.g., Huber (1981)) to the rolling regression framework.7 Extending our results in thesedirections may prove quite challenging, but should be worth the e�ort.The Wharton School, University of Pennsylvania, Philidelphia PA 19104 Phone: 215 8988233.University of Chicago Graduate School of Business and N.B.E.R., Chicago IL 60637. Phone:312 702 3231.APPENDIXWe will drop the pre�x \h00 from our stochastic processes to conserve space in our proofs.Lemma's, theorem's etc., will include the \h"'s. All processes depend on h.PROOF OF THEOREM 1: We will �rst divide the problem into two pieces.De�nition h
(ij)T =P� h
(ij)�hw��T�� .Lemma 1 If Assumptions A & D hold, thenh�1=4(
̂(ij)T � 
(ij)T ) = h1=4X� w��T�B(ij)� + op(1)h�1=4(
(ij)T � 
(ij)T ) = h�1=4X� 	��T�M�(ij)� + op(1)From lemma A.1, it is obvious that theorem 1 holds. The proof of lemma A.1 relies onsome other lemmas which we will prove �rst.7Robust conditional variance estimation methods have been employed in the ARCH literature. Forexample, Taylor (1986) and Schwert (1989) estimate the conditional standard deviation as a distributedlag of absolute residuals (rather than estimating the conditional variance as a distributed lag of squaredresiduals). Schwert was explicitly motivated by the robust variance estimation methods of Davidian andCarroll (1987). For a formal analysis of the robustness properties of these models see Nelson and Foster(1992). 28



Lemma 2 
̂(ij)T � 
(ij)T +phX� w��T�Q(ij)� + h(Bij + Bji +D)where Bji �X� (�(j)� � �̂(j)� )w��T�M(i)�and D �X� (�(j)� � �̂(j)� )(�(i)� � �̂(i)� )w��T��PROOF OF LEMMA A.2: First note that�X(j)� � h�̂(j)� = �M(j)� + h�(j) � h�̂(j)�= �M(j)� + h(�(j)� � �̂(j)� )So [�X(i)� � h�̂(i)� ][�X(j)� � h�̂(j)� ] = (�M(i)� + h(�(i)� � �̂(i)� ))���M(j)� + h(�(j)� �̂(j)� )�= �M(i)��M(j)� + h(�(j)� � �̂(j)�)�M(i)� ++ h(�(i)� � �̂(i)� )�M(j)� ++ h2(�(j)� � �̂(j)� )(�(i)� � �̂(i)� )De�ne A =P� w��T�M(i)��M(j)� Thus, 
̂(ij)T � A + h(Bij + Bji +D) .Now analyzing A:A = X� w��T�M(i)�M(j)�= X� 
(ij)�w��T�� +X� w��T (�M(i)��M(j)� � 
(ij)���)= 
(ij)T +phX� w��T�Q(ij)� 2Lemma 3 
(ij)T � 
(ij)T Xw��T�� = 1Xs=0	s�T�M�(ij)s + E + Fwhere E � �(T )P1s=0	s�T�s and F �P1s=0	s�T (�(s)� �(T ))�s.29



PROOF: 
(ij)T � 
(ij)T 1Xs=0w��T�� =X� (
(ij)� � 
(ij)T )w��T��= (X�>T ��hXs=T �
(ij)sw��T�� �X�<T T�hXs=� �
(ij)sw��T��)= ( XT�s<� w��T�
(ij)s�� � X��s<T w��T�
(ij)s��)= ( 1Xs=T 1X�=s+hw��T���
(ij)s � T�hXs=0 sX�=0w��T���
(ij)s)= 1Xs=0(Is�T 1X�=s+hw��T�� � Is<T sX�=0w��T��)�
(ij)s= 1Xs=0	s�T�
(ij)sNow use the Doob-Meyer decomposition of �
, and we get
(ij)T � 
(ij)T Xw��T = 1Xs=0	s�T (�(s)�s+ �M�(ij)s)= �(T ) 1Xs=0	s�T�s+ 1Xs=0	s�T (�(s)� �(T ))�s+ 1Xs=0	s�T�M�(ij)s 2Lemma 4 Under Assumptions A & D the following hold(A.1) Bij = op(h�3=4)(A.2) D = Op(1) (A.3) E = Op(h1=2)(A.4) F = Op(h1=2)PROOF OF (A.1): Because �; �̂, and w are all predictable, and �M is a martingaledi�erence array, E(Bij) = 0and E(B2ij) = E(X� (�(i)� � �̂(i)�)2w2��T
(jj)���):But, by part i of Assumption (A) we know thatsupT����T �(�(i)� � �̂(i)� )2 = Op(1)30



By Assumption D, we know sup(w2��T) = Op(h�1). By parts iv and vii of Assumption A,we know that sup(
(jj)�) = Op(1). By D, we know that there are O(h�1=2) terms in oursum. And by de�nition, �� = h. Thus, E(B2ij) = Op(h�1=2). So, by Jensen's inequalityP (Bij > Mh�3=4) < Op(h�1=2)=M2h�3=2= Op(h1) = op(1)PROOF OF (A.2): Using part i of Assumption A and Assumption D we see that D = Op(1).PROOF OF (A.3): Using part iii of Assumption A, we see that �T = Op(1). By AssumptionD and the de�nition of 	 we can therefore conclude that E = Op(h1=2).PROOF OF (A.4): Using part ii of Assumption A, the de�nition of  , and Assumption D,we see that F = Op(h1=2). 2PROOF OF LEMMA A.1: Follows by substituting lemma A.4 into lemmas A.2 and A.3.2 Thus, we have now completed the proof of theorem 1.PROOF OF THEOREM 2: By Theorem 1, we need only analyzeh1=4X� w��T�B(ij)� + h�1=4X� 	��T�M�(ij)� :But since B and M� are martingales, we know its mean to be zero and its covariancebetween terms ij and kl to be:h1=2X� w(ij)��Tw(kl)��T�(ijkl)��� + h�1=2X�  (ij)��T (kl)��T�(ijkl)���+X� w(ij)��T (kl)��Tq�(ijij)��(klkl)��(ijkl)���+X� w(kl)��T (ij)��Tq�(klkl)��(ijij)��(klij)���which by Assumptions (A.v), (A.vi) and B is asymptotically equal to C(ijkl)T . Now applyingthe standard martingale central limit (which uses Assumptions C and A.vii and A.viii) see,e.g., Liptser and Shiryayev (1980), we get the desired result. 2PROOF OF THEOREM 3: Before we begin we have to mention a detail about what weare going to prove. We will prove that trimmed-mean versions of (10) and (11) will workhave the desired properties. Thus, we will replace the sumX� f�(�)231



by a trimmed version, namely X� min(f�(�)2;M):(In the multivariate case, each element of the matrix f�(�)f�(�)0 should be trimmed by theconstant M.)First we need to represent f�(�) asf�(�) = �+�h1=2Xs=� h�1=2(�Xs � �̂s�s)2=�� �Xs=���h1=2 h�1=2(�Xs � �̂s�s)2=�=Xs h�1=2w�((s� �)h1=2)(�Xs � �̂s�s)2where w�(x) is de�ned as h�1=2 1� sgn(x)I[��;�](x), where sgn(x) is the sign of x. I.e. sgn(x) =1 if x > 0, and sgn(x) = �1 if x < 0. Thus, we have written f� in the form of equation(5). If Ps w�(s)h = 1, then Assumption D would hold and we could apply lemmas A.2-A.4.But, looking at the proofs of A.2-A.4 we see that this fact isn't used. Thus, from lemmasA.2-A.4 we have an asymptotic representation for f�(�) in terms of martingales. Using thesame CLT as before, we can �nd the asymptotic distribution for f�(�). In particular f�(�)converges to a normal with mean zero and variance of 2��=�+2��� =3. Thus, asymptoticallylimM!1 limh!0E(min(f�(�)2;M)! 2��=� + 2���=3:Now applying the law of large numberslimM !1 limh! 0 1=KX� min(f�(�)2;M)=
(�)! 2��=� + 2���=3:Substituting this into equations (10) and (11) we get the desired result.Note: This proof also works for the multivariate problem.Note: The importance of the truncation is that convergence in distribution will implyconvergence in mean only for bounded random variables. So, we must make the f�(�)2bounded to use the law of large numbers. 2PROOF OF THEOREM 4: This theorem consists of three di�erent optimizations ofequation (9). Part (a) forces m0 to be zero, part (b) forces n0 to be zero, and part (c) onlyconstrains n0 and m0 to be non- negative. Parts (a) and (b) follow from taking derivativesand setting equal to zero. By the form of equation (9), it is obvious that there is a unique32



minimum. Part (c) is solved by using partial derivatives. The side constraints of non-negativity for n0 and m0 come into play for extreme values of �. Thus, we get the threepart solution. 2Lemmas A.5 through A.8 set up theorem 5.Lemma 5 (Some calculations for exponential weights) let ci = �i(1��), for i = 0; 1; 2; : : :.De�ne Ci � 1Xj=i cj = �i:Then, 1Xi=0 c2i = (1� �)2=(1� �2)and 1Xi=0C2i = 1=(1� �2). The minimum of 1Xi=0 c2i +A 1Xi=0C2i (24)occurs at � = 1�pA+ o(pA), and the minimum value obtained is pA+ o(pA).PROOF: Note that formula (24) is equivalent to(1� �)2=(1� �2) + A=(1� �2) (25)The following algebra minimizes (25) to generate our result. (� = 1� �)min� (�2 + A)=(1� (1� �)2)min� (�+ A=�)=(2� �)for which the minimum occurs at �2 = A(1 � �), which is � = pA + o(pA), and the valueof (25) at this point is pA+ o(pA). 2Lemma 6 (Discrete approximately equals continuous), Any c0is which sum to one havethe property that the value of equation (24) is at least pA. In particular, let D+ =ff(�)j R10 f(t)dt = 1g, thennXi=1 c2i +A nXi=1C2i � minf2D Z 10 f(t)2dt +A Z 10 (Z 10 f(s)ds)2dt (26)� pA: 33



PROOF: Taking f(t) = wi for i � t < i+ 1which is in D, and its value is exactly the left hand side of (26). This proves the inequalitypart. Write f(t) = �e��t + �(t);with � = pA. Then Z 10 �(t)dt = 0 (27)Because R f(t)dt = 1, and R �e��tdt = 1. The following follows by an interchange ofintegrals and the de�nition of �(�):Z 10 f(t)2dt = �=2 + Z 10 �(t)�e��tdt + Z 10 �(t)2dt: (28)Obviously, Z 1t f(s)ds = e��t + Z 1t �(s)dsSome more calculus yields:Z 10 �Z 1t f(s)ds�2 dt = Z 10 �(t)dt� Z 10 �(t)e��tdt+ Z 10 �Z 1t �(s)ds�2 dt (29)Substituting (27) into (29) yields:Z 10 �Z 1t f(s)ds�2 dt = � Z 10 �(t)e��tdt + Z 10 �Z 10 �(s)ds�2 dt (30)Our desired result is now A times equation (30) plus equation (28). Putting these togetheryields (recall � = pA):goal = �+ Z 10 �(t)2dt+ Z 10 (Z 10 �(s)ds)2dt � �;with equality holding if f(�) = �e��t. 2Lemma 7 If P1i=0 ci = p, then ci = p�i(1��) is asymptotically (as A! 0) the minimizerof equation (24) with an asymptotic value of p2pA.PROOF: Lemma A.5 shows the value of (24) for these c0is, and lemma A.6 shows they can'tbe improved upon. 234



Lemma 8 Restrict ws such that R10 0wsds =p. Then the optimum ws is0ws = 8<: p�e��s for s � 0;(1� p)�e��s for s < 0;(where � = p�=�), which yields an asymptotic variance ofp��((2p� 1)2=2 + 1=2� (2p� 1)�:PROOF: We will break the problem into two pieces, the positive part (s � 0) and thenegative part (s < 0). Each will be separately minimized for each value of p = R10 0wsds.First consider Z 10 ws	sds = Z 10 ws Z 1s wtdtds= (1=2)(Z 10 ws Z 1s wtdtds + Z 10 ws Z 1s wsdsdt)= (1=2) Z 10 Z 10 wswtdtds = p2=2Therefore for �xed p, minimizing the w's is the same as minimizing equation (26) abovewith A = �=�. Thus, the parameter of the exponential function is identical regardless of pand regardless of which side of zero we are on. So, � = pA, is optimal. 2PROOF OF THEOREM 5: Lemmas A.5 through A.8 prove everything except picking thevalue of p. For parts (A) and (B), the value of p is determined so we are done. For part(C) we need to minimize the variance with respects to p. The variance isp��((2p� 1)2=2 + 1=2� (2p� 1)�)which is minimized at (2p � 1) = �. Thus, the minimum occurs at p = (1 � �)=2, so theoptimum variance is = (1=2)p��(1� �2) 2PROOF OF THEOREM 6: Equation 3.7 follows from 9 by substitution. 3.7 is obviouslypositive which proves our result. 235
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Figure 1: Dominance relations. This graph shows that the accuracy of various estimatesof the variance vs. time. The optimal two sided exponentially weighted estimate is nor-malized to have a standard error of one. Relative to the accuracy of this estimator, theoptimal two-sided at weight has a standard error of 1.07. The French/Schwert/Stambaughassumes a �xed variance over the month so its performance changes over the month. Theoptimal one-sided at weight estimator uses only historical data and so does worse than theother estimators which use both the past and the future to estimate 
t.39



Figure 2: Real vs apparent measurement accuracy.
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Figure 3: Whitened returns of the S&P 500.
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Figure 4: Estimated log of the variance of the S&P 500: A 25 day two-sided at-weight rolling regression was used to estimate the variance of the S&P 500. (50 days intotal.) There are 240 non-overlapping estimates of the variance (60 years � 200 tradingdays per year / 50 days per estimate). The graph shows that assuming conditional ho-moskedasticity is reasonable.
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Figure 5: 95% con�dence bands: For each �xed time �gure 4 showed the estimate of 
.This graph shows a 95% con�dence interval around that estimate. (b
t � 2 S. E.) The 95%holds pointwise, not uniformly over the entire interval so we would expect that 5% of thetime that the con�dence interval does not cover the truth. Notice that this is a log scaleplot of the 
1=2t .
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Figure 6: Simulated data with 95% con�dence bands: The \truth" is seen to bouncearound mostly between the con�dence bounds{95% of the time lieing between the boundsand 5% of the time bouncing outside them. Since these bands hold pointwise, the \truth"should be outside them 5% of the time.
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