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Abstract

In the past decade, there has been an explosion of interest in using l1-regularization in place
of l0-regularization for feature selection. We present theoretical results showing that while
l1-penalized linear regression never outperforms l0-regularization by more than a constant
factor, in some cases using an l1 penalty is infinitely worse than using an l0 penalty. We
also compare algorithms for solving these two problems and show that although solutions
can be found efficiently for the l1 problem, the “optimal” l1 solutions are often inferior
to l0 solutions found using greedy classic stepwise regression. Furthermore, we show that
solutions obtained by solving the convex l1 problem can be improved by selecting the best
of the l1 models (for different regularization penalties) by using an l0 criterion.
Keywords: Variable Selection, Regularization, Stepwise Regression
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1 Introduction

In the past decade, a rich literature has been developed using l1-regularization for linear
regression including Lasso (Tibshirani, 1996), LARS (Efron et al., 2004), fused lasso (Tibshi-
rani et al., 2005), grouped lasso (Yuan and Lin, 2006), relaxed lasso (Meinshausen, 2007),
and elastic net (Zou and Hastie, 2005). These methods, like the l0-penalized regression
methods which preceded them Akaike (1973); Schwarz (1978); Foster and George (1994),
address variable selection problems in which there is a large set of potential features, only
a few of which are likely to be helpful. This type of sparsity is common in machine learning
tasks, such as predicting disease based on thousands of genes, or predicting the topic of a
document based on the occurrences of hundreds of thousands of words.

l1-regularization is popular because, unlike the l0 regularization historically used for fea-
ture selection in regression problems, the l1 penalty gives rise to a convex problem that can
be solved efficiently using convex optimization methods. l1 methods have given reasonable
results on a number of data sets, but there has been no careful analysis of how they perform
when compared to l0 methods. This paper provides a formal analysis of the two methods,
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and shows that l1 can give arbitrarily worse models. We offer some intuition as to why this
is the case – l1 shrinks coefficients too much and does not zero out enough of them – and
suggest how to use an l0 penalty with l1 optimization.

We consider the classic normal linear model

y = Xβ + ε,

with n observations y = (y1, . . . , yn)′ and p features x1, . . . ,xp, p � n, where X =
(x1, . . . ,xp) is an n × p “design matrix” of features, β = (β1, . . . , βp)′ is the coefficient
parameters, and error ε ∼ N(0, σ2In). Assume that only a subset of {xj}pj=1 has nonzero
coefficients.

The traditional statistical approach to this problem, namely, the l0 regularization prob-
lem, finds an estimator that minimizes the l0 penalized sum of squared errors

arg minβ

{
‖y −Xβ‖2 + λ0‖β‖l0

}
, (1)

where ‖β‖l0 =
∑p

i=1 I{βi 6=0} counts the number of nonzero coefficients. However, this prob-
lem is NP hard Natarajan (1995). A tractable problem relaxes the l0 penalty to the l1 norm
‖β‖l1 =

∑p
i=1 |βi| and seeks

arg minβ

{
‖y −Xβ‖2 + λ1‖β‖l1

}
, (2)

and is known as the l1-regularization problem Tibshirani (1996). The exact computation of
(2) is, in the worst case, much more efficient because of the convexity Efron et al. (2004);
Candes and Tao (2007).

We assess our models using the predictive risk function (3)

R(β, β̂) = Eβ‖ŷ − E(y|X)‖22 = Eβ‖Xβ̂ −Xβ‖22. (3)

We are interested in the ratios of the risks of the estimates provided by these two criteria.
Unlike risk functions, predictive risk measures the true prediction error with irreducible vari-
ance from which noise has been removed. Smaller risks imply better expected performance in
the future for prediction purpose. Recent literature has a focus on the selection consistency,
where whether or the true variable can be identified is critical. However, in real applica-
tion, due to the prevalent multicollinearity, highly correlated predictors are hard to separate
from “true” or “false”. Here we focus on the purpose of prediction accuracy and provocate
[FORGET how to spell] the concept of predictive risk. explain risk vs. consistency
and the relation of risk to out-of-sample error; what else is this called b other
people? see www-stat.wharton.upenn.edu/ stine/research/select.predRisk.pdf;
maybe also Barbieri and Berger (2004)

Our first result in this paper, given below as Theorems 1 and 2, is that l0 estimates
provide more accurate predictions than l1 estimates do, in the sense of minimax risk ratios,
as illustrated in Figure 1:

• infγ0 supβ
R(β,β̂l0 (γ0))

R(β,β̂l1 (γ1))
is bounded by a small constant; furthermore, it is close to one

for most γ1s, especially for large γ1s, which are mostly used in sparse systems.
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• infγ1 supβ
R(β,β̂l1 (γ1))

R(β,β̂l0 (γ0))
tends to infinity quadratically; in an extremely sparse system,

the l1 estimate may perform arbitrarily badly.

• R(β, β̂l1(γ1)) is more likely to have a larger risk than R(β, β̂l0(γ0)) does.
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Figure 1: Left: The gray area shows the feasible region for the risk ratios–the log risk-ratio is above
zero when l0 produces a better fit. The graph shows that most of the time l0 is better.
The actual estimators being compared are those that have the same risk at β = 0, i.e.,
R(0, β̂l0(γ0)) = R(0, β̂l1(γ1)). Middle: This graph traces out the bottom envelope of the
left hand graph (but takes the reciprocal risk ratio and no longer uses the logarithm scale). The
dashed blue line displays supβ R(β, β̂l0(γ0))/R(β, β̂l1(γ1)) for γ0 calibrated to have the same
risk at zero as γ1. This maximum ratio tends to 1 when γ1 → 0 (the saturated case) or ∞
(the sparse case). With an optimal choice of γ0, infγ0 supβ R(β, β̂l0(γ0))/R(β, β̂l1(γ1)) (solid red
line) behaves similarly. Specifically, the supremum over γ1 is bounded by 1.8. Right: This
graph traces out the upper envelopes of the left hand graph on a normal scale. When γ0 →∞,
supβ R(β, β̂l1(γ1))/R(β, β̂l0(γ0)) tends to ∞, for both γ1 that is calibrated at β = 0 and that
minimizes the maximum risk ratio.

A detailed discussion on the risk ratios will be presented in Section 3, along with a
discussion of other advantages of l0 regularization. Our other results in the paper include
showing that applying the l0 criterion on an l1 subset searching path can find the best
performing model (Section 4) and running stepwise regression and Lasso on a reduced NP
hard example shows that stepwise regression gives better solutions (Section 5).

We compare l0 vs. l1 penalties under three assumptions about the structure of the
feature matrix X: independence, incoherence (near independence) and when the l0 problem
is NP-hard. For independence, we find: ... For near independence, we find that l1 penalized
regression followed by l0 (explain) beats l1, and for the NP-hard case, we find that if one
could do the search, then the risk ratio could be arbitrarily bad for l1 relative to l0

2 Background on Risk Ratio

what is it, why is it good, where has it been used? risk vs consistence; and
relation to out-of-sample error
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3 Risk Ratio Results

3.1 l0 solutions give more accurate predictions.

Suppose that β̂ is an estimator of β. Remember that the predictive risk of β̂ is defined as

R(β, β̂) = Eβ‖ŷ − E(y|X)‖22 = Eβ‖Xβ̂ −Xβ‖22.

We furthermore consider the case when X is orthogonal in this section. (For example,
wavelets, Fourier transforms, and PCA all are orthogonal). The l0 problem (1) can then be
solved by simply picking those predictors with least squares estimates |β̂i| > γ, where the
choice of γ depends on the penalty λ0 in (1). It was shown Donoho and Johnstone (1994);
Foster and George (1994) that λ0 = 2σ2 log p is optimal in the sense that it asymptotically
minimizes the maximum predictive risk inflation due to selection.

Let

β̂l0(γ0) =
(
β̂1I{|β̂1|>γ0}, . . . , β̂pI{|β̂p|>γ0}

)′
(4)

be the l0 estimator that solves (1), and let the l1 solution to (2) be

β̂l1(γ1) =
(

sign(β̂1)(|β̂1| − γ1)+, . . . , sign(β̂p)(|β̂p| − γ1)+
)′
, (5)

where the β̂i’s are the least squares estimates.
We are interested in the ratios of the risks of these two estimates,

R(β, β̂l0(γ0))

R(β, β̂l1(γ1))
and

R(β, β̂l1(γ1))

R(β, β̂l0(γ0))

. I.e., we want to know how the risk is inflated when another criterion is used. The smaller
the risk ratio, the less risky (and hence better) the numerator estimate is, compared to the
denominator estimate. Specifically, a risk ratio less than one implies that the top estimate
is better than the bottom estimate.

Formally, we have the following theorems, whose proofs are given in the last section:

Theorem 1 There exists a constant C1 such that for any γ0 ≥ 0,

inf
γ1

sup
β

R(β, β̂l1(γ1))

R(β, β̂l0(γ0))
≥ C1 + γ0. (6)

I.e., given γ0, for any γ1, there exist β’s such that the ratio becomes extremely large.
Contrast this with the protection provided by l0:

Theorem 2 There exists a constant C2 > 0 such that for any γ1 ≥ 0,

inf
γ0

sup
β

R(β, β̂l0(γ0))

R(β, β̂l1(γ1))
≤ 1 + C2γ

−1
1 . (7)

4



The above theorems can definitely be strengthened, as demonstrated by the bounds
shown in Figure 1, but at the cost of complicating the proofs. We conjecture that there
exist constants r > 1, and C3, C4, C5 > 0, such that

inf
γ1

sup
β

R(β, β̂l1(γ1))

R(β, β̂l0(γ0))
≥ 1 + C3γ

r
0 , (8)

inf
γ0

sup
β

R(β, β̂l0(γ0))

R(β, β̂l1(γ1))
≤ 1 + C4γ1e

−C5γ1 . (9)

These theorems suggest that for any γ1 chosen by the algorithm, we can always adapt
γ0 such that β̂l0(γ0) outperforms β̂l1(γ1) most of the time and loses out a little for some β’s;
but for any γ0 chosen, no γ1 can perform consistently reasonably well on all β’s.

Because of the additivity of risk functions, (see appendix equations (14) and (15)), due
to the orthogonality assumption, we focus on the individual behavior of β for each single
feature. Also the risk functions are symmetric on β, so only the cases of β ≥ 0 will be
displayed.

Figure 2 illustrates that given γ1, we can pick a γ0, s.t. the risk ratio is below 1 for
most β except around (γ0 + γ1)/2, yet this ratio does not exceed one by more than a small
factor, even for the worst case.
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Figure 2: For each γ1, we let γ0 = γ1 + 4 log(γ1)/γ1. This choice of γ0 makes the risk ratios small at β ≈ 0

and β ≥ γ0, only inflated around β/(γ0 + γ1) = 1/2, albeit very little especially when γ1 is large

enough.

The intuition as to why l0 fares better than l1 in the risk ratio results is that l1 must
make a “devil’s choice” between shrinking the coefficients too much or putting in too many
spurious features. l0 penalized regression avoids this problem. This section explains this in
more detail.
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3.2 l1 shrinks coefficients too much

Why does the l1 estimate fare so badly in the risk ratio comparisons? Because of over
shrinkage.

l0 estimate
l1 estimate

l0 and l1 Estimates
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Figure 3: Left: The l0 estimate keeps the least squares value after the cutting point, but the l1 estimate

always shrinks the least squares estimate by a fixed amount. Middle: the model we simulate

has only one true feature with true β = 1 and a thousand spurious features. We compute the

average Lasso estimate of β for a fixed number of features included in the model (as an index

of the l1 penalty) from several different trials.
¯̂
βl1 is always shrunk by at least 20% in this

experiment. Right: The Cauchy density has heavier tails than the Laplacian density does.

Thus, a Laplacian prior tends to shrink large values of β’s.

From a frequentist’s point of view, the l1 estimator (5) shrinks the coefficients and thus
is biased (Figure 3). In practice, β̂l1 can be substantially shrunk towards zero when the
system is sparse, as shown in the middle panel of Figure 3.

From a Bayesian’s perspective, the l1 penalty is equivalent to putting a Laplacian prior
on β Tibshirani (1996); Efron et al. (2004), while the l0 penalty can be approximated by
Cauchy priors Johnstone and Silverman (2005); Foster and Stine (2005). The right panel
of Figure 3 shows that the Cauchy distribution has a much heavier tail than the Laplacian
distribution does. This implies that when the true β is far away from 0, the l1 penalty will
substantially shrink the estimate toward zero.

The bias caused by the shrinkage increases the predictive risk proportionally to the
squared amount of the shrinkage. The sparser the problem is, the greater the shrinkage is,
thus the larger the risk is.

These results show that in theory the l0 estimate has a lower risk and provides a more
accurate solution. Empirically, stepwise regression performs well in large data sets, where a
sparse solution is particularly preferred George and Foster (2000); Foster and Stine (2004);
Zhou et al. (2006).

3.3 l0 controls the False Discovery Rate (FDR) better.

The False Discovery Rate (FDR) is increasingly used to control the fraction of falsely
rejected hypotheses (e.g., the number of features added to the model that should not have
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been added), especially in fields like biology and genetics, where the interpretation of the
data is at least as important as prediction. FDR is defined as E[V/R|R > 0]P (R >
0) Benjamini and Hochberg (1995), where R is the total number of discoveries and V is
the number of false discoveries among them. It controls the expected proportion of false
positives in multiple testing problems.

The procedure proposed in Abramovich et al. (2006) aims at controlling FDR in models
with the assumption of orthogonal predictors. It was shown that this FDR-penalized proce-
dure is adaptively optimal in any lp ball, 0 ≤ p ≤ 2, in the sense of asymptotic minimaxity.
The penalty being used is an l0 type regularization.

To see this difference, we simulated a simple problem for Lasso and stepwise regression
to solve. In Table 1, we compare the mean true and false discoveries of coefficients found by
forward stepwise regression using RIC and Lasso on synthetic data. The forward stepwise
regression does a better job in controlling FDR than Lasso does, when a sparse result is
preferred.

p = 8 p = 1000 p = 10000
Method True False True False True False
Lasso 4.0 2.37 4.0 26.8 4.0 41.87

Stepwise 4.0 0.61 3.73 0.14 4.0 0.18

Table 1: Mean true and false discoveries of features over 100 tests. In the simulation, the number of

effective features is 4 and that of the potential features p = 8, 1000 and 10000. The sample size

n = 50. All the features are independently generated. Lasso tends to have a high FDR when the

system is sparse.

4 l1 optimization using an l0 criterion

cite Wainright and compare to his results; he notes that under near orthogonal
conditions, l1 gives consistency.

We can make use of the LARS algorithm to generate a set of candidate solutions and
then use the l0 criterion to find the best of the solutions along the regularization path. We
evaluated this method as follows. We simulated y from a thousand features, only 4 of which
have nonzero contributions, plus a random noise distributed as N(0, 1). Both the training
set and the test set have size n = 100. We apply the Lasso algorithm implemented by LARS
on this synthetic data set. For each step on the regularization path, this algorithm selects
a subset C ⊂ {1, . . . , 1000} of features that are included in the model. We then adopt a
modified RIC criterion suggested in George and Foster (2000):

‖y −XC β̂C‖22 +
|C|∑
q=1

2 log(p/q)σ2 (10)

to find an optimal C. The crucial part here is that the coefficient estimate β̂C being used
in (10) is the least squares estimate of the true β obtained by fitting y on XC = (xj)j∈C ,
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and not the Lasso estimate β̂l1 provided by the algorithm. We also use this least squares
estimate in out-of-sample calculations.
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Figure 4: l0 penalties help finding the best model (independent predictors case). y is simulated from one

thousand features, only four of which have nonzero contributions, plus an N(0, 1) error. Both

the training set and the test set have sizes n = 100. Each step in the LARS algorithm gives a set

of features with nonzero coefficient estimates. We compute the least squares (LS) estimates on

this subset and the modified RIC criterion (10) on the training set. We also compare the out-of-

sample root mean squared errors using the LS estimates and the Lasso estimates on this LARS

path. The features are independently generated. The model that minimizes the l0 penalized

error has exactly four variables in it. It also outperforms any of the l1 models out-of-sample on

this data set.
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Figure 5: l0 penalties help finding the best model (correlated predictors case). The setup is exactly the

same as in Figure 4 except that each pair of features has a correlation ρ = 0.64. In this case,

the optimal model under the modified RIC criterion has a slightly better RMSE than the best

l1 model. The Lasso out-of-sample RMSE is typically minimized when the model has included

more than 50 features.
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We compare two cases: the xj ’s are generated independently of each other, meaning
that X ′X is diagonal, and the xj ’s are generated with a pairwise correlation ρ = 0.64. As
shown in Figure 4, in the independent feature case, the model picked by the modified RIC
criterion always outperforms any Lasso model on the test set. In the case with correlated
predictors (Figure 5), there is little difference between the out-of-sample accuracies of the
l0-picked model and the best Lasso model in this case, but Lasso adds around 50 more
spurious variables.

Thus, by combining the computational efficiency of an l1 algorithm and the sparsity
guaranteed by the l0 penalization, we can easily select an accurate model without cross
validation.

Theorem: Under the assumption of incoherence, the risk ratio of l1 to l2 when l1 is
followed by ???

Theorem: Under the assumption of incoherence, the l1 - l2 risk ratio of obtained when
l1 is used for feature selection, followed by l0 regression is the same as when l0 is used.

5 l0 and NP-hardness

The l0 problem is NP-hard and hence, at least in theory, intractable. (In practice, of course,
people often use approximate solutions to problems that in the worst case can be NP-hard.)
One of the attractions of l1-regularization is that it is convex, hence solvable in polynomial
time.

In this section, we compare how the two approaches fare on a known NP-hard regression
problem.

We start with a simple constructive proof that the risk ratio for l1 to l0 can be arbitrarily
bad. Construct data as follows. Pick a large number of independent features zj . Construct
new features x1 = z1 + εz2 and x2 = z1− εz2 and. Let y = (z1 + z2)/2 plus noise. Then the
correct model is y = x2/ε. Include the rest of the features zj , j > 2 as spurious features. ...

In Natarajan (1995) the known NP hard problem of “the exact cover of 3-sets” was
reduced to the best subset selection problem as below: y = 1n, X is an n×p binary matrix
with each column having three nonzero elements: ‖xi‖0 = 3, β is a p× 1 vector, ε > 0 and
we want to solve

min
β
‖β‖0, s.t. ‖y −Xβ‖2 < ε. (11)

Note that if there is a solution to this problem, the number of features being chosen should
be n/3.

We then ask which method comes closer to solving this problem: a greedy approximation
to the l0 problem or an exact solution to the l1 problem. To this end, we applied Lasso
and forward stepwise regression on various n’s. For small n’s, we took full collections of the
three subsets, i.e., p equals n choose 3; for larger n’s, we took p = 10 · n. Table 2 and 3
list the number of subsets included in the model. Forward stepwise regression always finds
fewer subsets, and hence a better solution, than Lasso.

All of our experiments on both synthetic and real data sets show that greedy search
algorithms, such as stepwise regression, aimed at minimizing l0-regularized error provide
sparser results. This is because l0 penalizes the sparsity directly, while l1 does not. It is
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Method n = 9 n = 12 n = 15 n = 18 n = 21 n = 24 n = 27 n = 30
Lasso 6 10 11 17 19 21 22 29

Stepwise 3 4 5 6 7 8 9 10

Table 2: The number of subsets chosen by Lasso and by forward stepwise regression with ε = 1/4. All 3-

subsets were considered, i.e., p =
(
n
3

)
. Forward stepwise regression always has the fewest possible

number of subsets, namely, n/3.

Method n = 99 n = 240 n = 540 n = 990 n = 1500
Lasso 93 219 504 812 1372

(2× 10−23) (9× 10−23) (9× 10−15) (6× 10−20) (2× 10−20)
Stepwise 40 96 223 364 595

(1× 10−28) (6× 10−27) (3× 10−26) (6× 10−25) (1× 10−25)

Table 3: The number of subsets chosen by Lasso and by forward stepwise regression with ε = 1/4. p = 10·n
3-subsets were randomly chosen to be the predictors. Forward stepwise regression always chooses

a sparser solution in the sense that it chooses fewer number of subsets. Numbers in parentheses

are the sum of squared errors when the algorithms terminated.

easy to construct an example where l1 will pick a solution with a smaller l1 norm but with
a less sparse solution Candes et al. (2007).

6 Conclusion

REWRITE
Statistically, the l0 regularization criterion is superior to that of l1 regularization; l0

generally provides a more accurate solution and controls the false discovery rate better. l1
can give arbitrarily worse predictive accuracy than l0, since l1 regularization tends to shrink
coefficients too much to include many spurious features. Computationally, l1 appears to
be more attractive; convex programming makes the computation feasible and efficient. In
practice, however, approximate solutions to the l0 problem are often better than than exact
solutions to the l1 problem. The best properties of the two methods can be combined.
Superior results were obtained by using convex optimization of the l1 problem to generate
a set of candidate models (the regularization path generated by LARS), and then selecting
the best model by minimizing the l0-penalized training error.

7 Appendix: Proofs

We will drop the γ’s when the situation is clear, and denote β̂l0(γ0) as β̂l0 and β̂l1(γ1) as
β̂l1 for simplicity.
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The l0 risk can be written as

R(β, β̂l0) = Eβ‖Xβ −Xβ̂‖2 = Eβ
p∑
i=1

‖xi‖2(βi − β̂i)2

= Eβ
p∑
i=1

(
(x′iε/‖xi‖)2I{|β̂i|>γ} + (‖xi‖βi)2I{|β̂i|≤γ}

)
(12)

=
p∑
i=1

{
σ2Eβ

[
Z2
i I{|βi+σZi|>γ}

]
+ (‖xi‖βi)2P (|βi + σZi| ≤ γ)

}
,

where Zi = x′iε/σ‖xi‖ ∼ N(0, 1), i = 1, . . . , p.
Similarly, the l1 risk can be written as

R(β, β̂l1) = Eβ
p∑
i=1

(
(x′iε/‖xi‖ − γ̃)2I{β̂i>γ̃} + (x′iε/‖xi‖+ γ̃)2I{β̂i<−γ̃}

+(‖xi‖βi)2I{|β̂i|≤γ̃}
)

(13)

=
p∑
i=1

{
Eβ
[
(σZi − γ̃)2I{βi+σZi>γ̃} + (σZi + γ̃)2I{βi+σZi<−γ̃}

]
+(‖xi‖βi)2P (|βi + σZi| ≤ γ)

}
,

Without loss of generality, we assume X ′X = I and σ = 1. Specifically, we consider the
case when p = 1. Let Φ(z) = P (Z ≤ z) and Φ̃(z) = P (Z > z) be the lower and upper tail
probabilities of a standard normal distribution and the two risk functions can be explicitly
written as

R(β, β̂l0) =
∫ ∞
γ0−β

z2φ(z)dz +
∫ −γ0−β
−∞

z2φ(z)dz + β2
[
Φ(γ0 − β)− Φ̃(γ0 + β)

]
= (γ0 − β)φ(γ0 − β) + (γ0 + β)φ(γ0 + β) (14)

+Φ(−γ0 + β) + β2Φ(γ0 − β) + (1− β2)Φ̃(γ0 + β),

R(β, β̂l1) =
∫ ∞
γ1−β

(z − γ1)2φ(z)dz +
∫ −γ1−β
−∞

(z + γ1)2φ(z)dz

+β2
[
Φ(γ1 − β)− Φ̃(γ1 + β)

]
= (−γ1 − β)φ(γ1 − β) + (−γ1 + β)φ(γ1 + β) (15)

+(γ2
1 + 1)Φ(−γ1 + β) + β2Φ(γ1 − β) + (γ2

1 + 1− β2)Φ̃(γ1 + β).

We list a few Gaussian tail bounds here that we will use in the proofs later. Detailed
discussion can be found in related articles Feller (1968); Donoho and Johnstone (1994);
Foster and George (1994); Abramovich et al. (2006).

Lemma 3 For any z > o,

1. φ(z)(z−1 − z−3) ≤ Φ̃(z) ≤ φ(z)z−1;

11



2. Φ̃(z) ≤ e−z2/2.

3. φ(z)(x−1−x−3+(1·3)·x−5−(1·3·5)·x−7+· · ·+(−1)k ·(2k−1)!!·x−2k−1 overestimates
Φ̃(z) if k is even, and underestimates Φ̃(z) if k is odd.

Lemma 4 For large enough γ0 > 0,

inf
γ1

sup
β

R(β, β̂l1)

R(β, β̂l0)
> γ0. (16)

Proof It suffices to show that for any fixed γ0 and any γ1

sup
β

R(β, β̂l1)

R(β, β̂l0)
> γ0.

Suppose γ1 ≥ γ0/
√

2, let βn = (n+ 1)γ0, then

‖β̂l1 − β̂LS‖22 > ‖β̂l1 − β̂LS‖22I{β̂LS>γ1} = γ2
1I{β̂LS>γ1} ≥

γ2
0

2
I{β̂LS>γ1}.

Hence,

E‖β̂l1 − β̂LS‖22 >
γ2

0

2
P (β̂LS > γ1),

where Z ∼ N(0, 1). Thus,

E‖β̂l1 − βn‖22 ≥ E‖β̂l1 − β̂LS‖22 − E‖β̂LS − βn‖22 >
γ2

0

2
P (β̂LS > γ1)− 1

=
(
γ2

0

2
− 1
)
P (β̂LS > γ1)− P (β̂LS ≤ γ1)

> γ0Φ((n+ 1)γ0 − γ1)− Φ(γ1 − (n+ 1)γ0),

for large enough γ0.
On the other hand,

E‖β̂l0 − βn‖22 = −nγ0φ(nγ0) + (n+ 2)γ0φ ((n+ 2)γ0) + Φ(nγ0)
+(n+ 1)2γ2

0Φ̃(nγ0) + (1− (n+ 1)2γ2
0)Φ̃((n+ 2)γ0)

≤ 1 +
(
−nγ0 −

1
2nγ0

+
(n+ 1)2γ0

n

)
φ(nγ0)

+
(

(n+ 2)γ0 +
1− (n+ 1)2γ2

0

(n+ 2)γ0

)
φ((n+ 2)γ0)

≤ 1 +
(

2 +
1
n

+ 2e−2(n+1)γ2
0

)
γ0φ(nγ0).
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Hence,

R(βn, β̂l1)

R(βn, β̂l0)
≥ γ0Φ((n+ 1)γ0 − γ1)− Φ(γ1 − (n+ 1)γ0)

1 +
(

2 + n−1 + 2e−2(n+1)γ2
0

)
γ0φ(nγ0)

Let n→∞, then

sup
β

R(β, β̂l1)

R(β, β̂l0)
≥ lim

n→∞

R(βn, β̂l1)

R(βn, β̂l0)
≥ γ0. (17)

For those 0 ≤ γ1 < γ0/
√

2, we consider β = 0 and denote

R0(γ0) = R(0, β̂l1(γ1)) = 2γ0φ(γ0) + 2Φ̃(γ0) (18)
R1(γ1) = R(0, β̂l0(γ0)) = −2γ1φ(γ1) + 2(γ2

1 + 1)Φ̃(γ1). (19)

We first show that for c ≤ γ1 < γ0/
√

2, R1(γ1)/R0(γ0) > γ0, where c is a constant such
that Φ̃(z)− φ(z)(1/z − 1/z3 + 1/z5) ≥ 0, for any z ≥ c, then since

d

dγ1
R1(γ1) = −4φ(γ1) + 4γ1Φ̃(γ1) < 0,

for any 0 ≤ γ1 ≤ c
R1(γ1)
R0(γ0)

≥ R1(c)
R0(γ0)

> γ0.

For any c ≤ γ1 < γ0/
√

2, we have φ(γ1) ≥ φ(γ0)e−γ
2
0/4, and

R1(γ1) ≥ −2γ1φ(γ1) + 2(γ2
1 + 1)

(
γ−1

1 − γ−3
1 + γ−5

1

)
φ(γ1)

≥ 2γ−5
1 φ(γ1) ≥ 27/2γ−5

0 φ(γ0)eγ
2
0/4

R0(γ0) ≤ 2
(
γ0 + γ−1

0

)
φ(γ0).

Thus for large enough γ0

R1(γ1)
R0(γ0)

≥ 25/2eγ
2
0/4

γ6
0 + γ4

0

> γ0.

Proof of Theorem 1: Let C1 = − arg minz{z > 2 : 25/2ez
2/4 − z7 − z5 > 0}. �

Lemma 5 There exists an M > 0 and a constant C > 0, such that for all γ1 > M ,
γ0 ≡ γ1 + 4 log γ1/γ1,

sup
β

R(β, β̂l0)

R(β, β̂l1)
≤ 1 + C · γ−1

1 . (20)
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Proof
It suffices to show that for all β ≥ 0, we have

R(β, β̂l0)

R(β, β̂l1)
≤ 1 + C · γ−1

1 . (21)

The proof is done by generating bounds for the risks at various β’s.
We first show that this is true when 0 ≤ β < log γ1/γ1. When β ≈ 0, the left hand side

of (21) is dominated by rejecting parts. We thus have

R(β, β̂1) ≥ 2
√

log γ1

γ1
P

(
Z ≥ γ1 +

2
√

log γ1

γ1

)
(22)

and

R(β, β̂0) ≤ 2γ2
1P

(
Z ≥ γ1 +

6
√

log γ1

γ1

)
(23)

The P () term in (23) goes to zero much faster than the P () term in (22). Hence the ratio
converges to zero for large γ1.

For small β, namely |β| ≤ γ1 − 2
√

log γ1 we have

R(β, β̂1) ≥ β2P (|Z| ≤ γ1 − |β|), (24)

and
R(β, β̂0) ≤ β2P (|Z| ≤ γ1 − |β|) + 2γ1P (|Z| ≥ γ0 − β). (25)

The two risks are close to each other relative to the size of the l1 risk.
For |β| ≥ γ1 + 1 we have

R(β, β̂1) ≥ R(β, β̂0). (26)

This is because

R(β, β̂l0) = (γ0 − β)φ(γ0 − β) + (γ0 + β)φ(γ0 + β)
+Φ(−γ0 + β) + β2Φ(γ0 − β) + (1− β2)Φ̃(γ0 + β)

= (γ1 + ∆γ − β)φ(γ1 − β) + (γ1 + ∆γ − β)
∂

∂γ
φ(γ − β)

∣∣∣∣
γ1

∆γ

+(γ1 + ∆γ + β)φ(γ1 + β) + (γ1 + ∆γ + β)
∂

∂γ
φ(γ + β)

∣∣∣∣
γ1

∆γ

+Φ(−γ1 + β) +
∂

∂γ
Φ(−γ + β)

∣∣∣∣
γ1

∆γ + β2Φ(γ1 − β) + β2 ∂

∂γ
Φ(γ − β)

∣∣∣∣
γ1

∆γ

+(1− β2)Φ̃(γ1 + β) + (1− β2)
∂

∂γ
Φ̃(γ + β)

∣∣∣∣
γ1

∆γ + γ1e
−γ2

1/2o(∆γ)

= (γ1 − β)φ(γ1 − β) + (γ1 + β)φ(γ1 + β) + Φ(−γ1 + β) + β2Φ(γ1 − β)
+(1− β2)Φ̃(γ1 + β)− (γ2

1 − 2βγ1)φ(γ1 − β)∆γ

−(γ2
1 + 2βγ1)φ(γ1 + β)∆γ + γ1e

−γ2
1o(∆γ)

= R(β, β̂l1) + 2γ1φ(γ1 − β) + 2γ1φ(γ1 + β)− γ2
1Φ(−γ1 + β)− γ2

1Φ̃(γ1 + β)

−(γ2
1 − 2βγ1)φ(γ1 − β)∆γ − (γ2

1 + 2βγ1)φ(γ1 + β)∆γ + γ1e
−γ2

1/2o(∆γ)
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We consider ∆γ = 4 log(γ1)/γ1. When β ≥ γ1 + 1, and γ1 is large, we have

R(β, β̂l0)−R(β, β̂l1)
≤ −γ2

1 + (2γ1 − (β − γ1)−1/2− 4γ1 log(γ1) + 8β log(γ1))φ(γ1 − β)

+(2γ1 − (β + γ1)−1/2− 4γ1 log(γ1)− 8β log(γ1))φ(γ1 + β) + γ1e
−γ2

1/2o(∆γ)
< 0.

For β close to γ1, namely γ1 − 2
√

log γ1 ≤ |β| ≤ γ1 + 1 we have

R(β, β̂1) ≥ γ2
1/2 (27)

and

R(β, β̂1)−R(β, β̂0) ≤ γ1P

(
γ1 − β ≤ Z ≤ γ1 − β +

8
√

log γ1

γ1

)
−γ

2
1

4
P

(
γ1 − β +

8
√

log γ1

γ1
≤ Z ≤ 9

8
γ1 − β

)
+ γ2

1e
−γ1/8

This case is where the C in (20) gets its actual value. We have made this gap more
explicit. Our result follows from computing with the actual tail bounds for the normal
distribution. The proof of this penultimate case requires using Lemma 6.

Lemma 6 For X = β + Z where Z ∼ N(0, 1), and β̂ = f(X) with |β̂ −X| < γ,

E
[(
β̂ − β

)2
IA

]
≤ (γ + 2)2

√
P (A)

Proof

E
[(
β̂ − β

)2
IA

]
= E

[(
β̂ −X +X − β

)2
IA

]
≤ E

[(
|β̂ −X|+ |Z|

)2
IA

]
≤ E

[
(γ + |Z|)2 IA

]
≤
√

E
[
(γ + |Z|)4

]
E[I2

A]

Where

E
[
(γ + |Z|)4

]
= γ4 + 4γ3E|Z|+ 6γ2EZ2 + 4γE|Z|3 + EZ4

≤ γ4 + 4γ32 + 6γ24 + 4γ8 + 16 = (γ + 2)4

Proof of Theorem 2: For γ1 < M we know that there exists some ε > 0 such that
R(β, β̂l1(γ1)) ≥ ε for all β. If we use the trivial estimator γ0 = 0, we know it has risk 1.
Hence, we can pick C2 = max(1/ε, C) where C is from our lemma, then Theorem 2 follows.
�
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