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THE RISK INFLATION CRITERION FOR MULTIPLE REGRESSION

By DEAN P. FOSTER AND EDWARD I. GEORGE
University of Pennsylvania and University of Texas, Austin

A new criterion is proposed for the evaluation of variable selection proce-
dures in multiple regression. This criterion, which we call the risk inflation,
is based on an adjustment to the risk. Essentially, the risk inflation is the
maximum increase in risk due to selecting rather than knowing the “cor-
rect” predictors. A new variable selection procedure is obtained which, in the
case of orthogonal predictors, substantially improves on AIC, C, and BIC
and is close to optimal. In contrast to AIC, C, and BIC which use dimen-
sionality penalties of 2, 2 and log , respectively, this new procedure uses a
penalty 2 log p, where p is the number of available predictors. For the case
of nonorthogonal predictors, bounds for the optimal penalty are obtained.

0. Introduction. Consider the problem where, based on the observation
of a dependent variable Y and a large set of potential predictors Xj,...,X,,
one would like to build the “best” multiple regression model. More precisely,
one would like to find and fit the “best” linear regression model of the form
Y=Xp1+ - +X7 By +¢, where X7, . .. ;X7 is a “selected” subset of X;,...,X,. A
popular strategy is first to use a criterion based on the data to select X7, ... X5
and second to estimate the coefficients g}, ..., B; by “least squares.” We shall
refer to such a two-stage strategy as a selection/estimation (s/e) procedure. [An
s/e procedure was called “subset least squares” by Mallows (1973).] The vague
and often unstated goal of such s/e procedures is to achieve a desirable trade-off
between predictive or explanatory power and parsimony.

Variable selection procedures for choosing a desirable subset of predictors
abound. A partial list of procedures motivated by a wide variety of criteria in-
cludes adjusted R? [Theil (1961)], FPE [Akaike (1970)], posterior odds [Zellner
(1971)], A, [Allen (1971)], C, [Mallows (1973)], PRESS [Allen (1974)], AIC
[Akaike (1974)], S, [Hocking (1976)], BIC [Schwarz (1978)], 2log logn [Hannan
and Quinn (1979)], PMDL [Risannen (1986)] and FIC [Wei (1992)]. A com-
prehensive summary of variable selection procedures as well as an extensive
bibliography can be found in the recent book by Miller (1990).

In this paper a new criterion is proposed for the evaluation of variable se-
lection procedures in multiple regression. This criterion, which we call risk
inflation, is the maximum possible increase in risk of the consequent s/e pro-
cedure due to selecting rather than knowing the “correct” predictors. The risk
inflation is obtained as the ratio of risk of an s/e estimator to the risk of the
ideal (but unavailable) s/e estimator which uses only the “correct” predictors.
Although risk inflation may used with any risk definition, in this paper we focus
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1948 D. P. FOSTER AND E. I. GEORGE

on the special case of risk inflation under predictive risk. As opposed to using
unadjusted predictive risk, which from a minimax perspective forces inclusion
of all predictors, use of the risk inflation criterion favors variable selection.

For the case of orthogonal predictors, it is seen that compared to overall
inclusion, the popular variable selection procedures AIC, C, and BIC offer
smaller risk inflation. Moreover, a new variable selection procedure is obtained
which, again in the case of orthogonal predictors, substantially improves on
AIC, C, and BIC and is close to optimal. In contrast to AIC, C,, and BIC which
use dimensionality penalties of 2, 2 and log n, respectively, this new procedure
uses a penalty 2log p, where p is the number of available predictors. Unfor-
tunately, in the case of nonorthogonal predictors, the optimal dimensionality
penalty depends on the correlation structure of the predictors. Bounds for the
optimal penalty are obtained for this case.

Section 1 formalizes the notion of the predictive risk of an s/e procedure.
Section 2 defines and motivates the risk inflation criterion. Section 3 defines
a general canonical variable selection procedure which, when o2 is known, in-
cludes the selection procedures AIC, C, and BIC. Section 4 obtains the risk
inflation of a variety of variable selection procedures and provides the opti-
mal procedure when the predictors are orthogonal and o2 is known. Section 5
obtains general bounds for the risk inflation for case of nonorthogonal predic-
tors. Section 6 treats the more realistic situation where o2 is unknown. It is
seen that all of the previous results are extendable to this situation. Section 7
concludes with the definition of a new variable selection procedure for the gen-
eral case, whose risk inflation properties in many situations will be close to
optimal. Finally, to improve the readability of the main text, the proofs of the
main theorems, as well as some necessary lemmas, have been placed in the
Appendix. However, we should point out that these proofs and lemmas may be
of independent interest. For example, the proof of Lemma A.2 is based on using
data augmentation in order to obtain a sufficiency reduction. Also, some of the
lemmas highlight aspects of predictive risk not mentioned in the text.

1. The risk of an s/e procedure. Consider the following canonical
decision-theoretic setup for fitting a multiple regression model. Let

(1.1) Y=Xip1+ -+ X, +e=XB+¢,

where Yisn x 1, X = [X;, ..., X,]isn Xp,ﬂ—(ﬁl,...,ﬂp) isp x 1, and
e ~ N,(0, o2 I). Also X =(1,. 1)’ so that 3 is the intercept term. In this
setting an estimator ﬂ of B is evaluated by its risk R(S, ﬂ) which will be the
expected loss for an appropriate loss function. Throughout this paper we focus
on using the predictive risk,

(1.2) R(B, B) = E5|XB ~ XBP.

This risk may be considered to be the expected squared error of prediction if
X is representative of future prediction values. [ Note that we are treating X
as fixed in the sense of Thompson (1978a, b).] Note also that under (1.2) the
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estimation problem is invariant under location and scale transformations. The
predictive risk has also been used in the context of evaluating variable selection
procedures by Mallows (1973), Shibata (1981) and Miller (1990). However, it
should be mentioned that our development of the risk inflation criterion in
Section 2 can be carried out for arbitrary risk functions.

As described in the Introduction, a popular estimation strategy in this set-
ting, especially if p is large, is to use an s/e (selection/estimation) procedure.
With respect to (1.1), this consists of first using a variable selection procedure
to estimate a subset of {3, . .., 3, } by zeros (the intercept 3, is always included),
and second to estimate the remaining 3;’s by least squares. An s/e procedure
can be conveniently represented as follows. Let I" be the set of all 1 x p vectors
of the form

(13) Y= (717"'77p)7

where vy =1land vy, =0or 1fori=2,...,p. There are 22 ~1 such vectors in T.
An s/e procedure is then equivalent to first selecting v € I" such that v; = 0 if 5;
is to be estimated by 0 and v; = 1 otherwise, and then estimating £ by

(1.4a) By = (D, X'XD,)"'D,X'Y,
where
(1.4b) D, = diag[y]

is the p x p diagonal matrix with diagonal elements . (A~! is a generalized
inverse of A.)

A variable selection procedure can then be represented as v(Y, X) = ~ (note
bold ), a function from the data into I". Its consequent s/e procedure can then be
represented by /67 Note that using least squares to estimate every component
of 3 is the special case

(1.5) By = XX)X'Y,  yg=(1,1,..)

Inthis settmg anatural criterion for evaluating an s/e procedure ﬂ.y istherisk
R(p, ,8.,) =Eg|X, ﬂ,y — X /2. Unfortunately, the minimax point of view with this
criterion may be unsatisfactory. Indeed, overall least squares '6’715 is minimax
for predictive risk. Thus, to be safe with respect to 0 predictive risk, one should
include all available predlctors with v1g and use ,B.hs However, this perspec-
tive may encourage one to forego the large risk reductions available with s/e
procedures. To remedy this deficiency, in the next section we propose the risk
inflation criterion. It will be seen that the s/e proceduyre with minimum risk
inflation is minimax with respect to a calibrated risk function. An alternative
modification of the risk for related problems was considered by Cohen (1965).

2. The risk inflation criterion. The idea behind risk inflation is to
calibrate the risk function to better reflect the potential gains from using an s/e
procedure. Such gains are available in parameter space regions where many
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of the f;’s are 0. In such regions we calibrate the risk function against the
risk of the ideal (though unavailable) s/e procedure which correctly eliminates
exactly the irrelevant X;’s. Of course, the best we can hope for with nonideal
(but available) selection procedures is that such regions will be identified with

high probability.
The risk inflation criterion is defined as follows. For each 3, define
2.1 n(B=n=0Q,n,...,m) €T,

where n; = I[5; # 0]. One can think of n as the “correct” value of v. As mentioned
above, the ideal (though unavailable) selection procedure would yield v = 7,
resulting in the ideal s/e procedure

(2.2) B, = (D,X'XD,)"'D,X'Y,

which is just the “least squares estimator” based on exactly the “correct”
predictors. R

In practice, of course, n is unknown making 3, unavailable. A variable selec-
tion procedure v may be thought of as an estimator of 7, and the s/e procedure
3~ as a proxy for 3,. For a particular § and its associated 7 [=7( )], the increase
in predictive risk from using B:, instead of En would be R(3, 57 )/R(B, B,, ). The
risk inflation of v is defined to be the maximum value of this ratio, namely

2.3) RI(v) = sgp{R(ﬁ, By)/R(B, B)}.

The risk inflation criterion (2.3) highlights the potential cost of using an s/e
procedure. Small risk inflation corresponds to good performance with respect
to 3,. Note that the selection procedure with smallest risk inflation (if it exists)
will be minimax with respect to the ratio function R(2, E.Y) J/R(3, B,,).

Up to this point, the definition of risk inflation in (2.3) is general and may
be applied to any risk functions. In the special case of predictive risk (1.2), the
risk inflation criterion is simplified by noting that the denominator is just the
“least squares” risk

(2.4) R(B, By) = In|o?,

where |n| is the number of nonzero components of 7. Thus, risk inflation for
predictive risk is

(2.5) RI(y) = su;pR(ﬂ, By)/nlo.

A useful benchmark for comparison with other s/e procedures is the risk
inflation of overall least squares 3, . Because it has constant predictive risk

R(p, B"/Ls) = po?, its corresponding risk inflation is

(2.6) RI(y) = supR(S, Bys)/Inlo® = max p/|n| = p.



RISK INFLATION CRITERION 1951

Of course, g would be safer than ignoring the data and using a fixed v (i.e.,
arbitrarily excluding variables) since RI(«) = oo unless v = ;5. However, as
will be seen in subsequent sections, selection procedures based on the data can
substantially improve on RI(vy;g) = p.

A reasonable criticism of the risk inflation criterion (2.3) is that it calibrates
against the risk of the ideal s/e procedure 3, which only excludes predictors
whose coefficients are exactly 0. Since improved predictive performance can
sometimes be obtained by excluding predictors with small but nonzero coeffi-
cients, a more realistic measure of risk inflation might be

@ Ri(y) = sgp{Rw, B/ [int R(s, )] }

With this criterion the risk of an s/e procedure is calibrated against the smallest
risk achievable for 8 with an estimator of the form ﬂ,y (with fixed v), namely

inf, R(p, ﬁ7) As we show in Section 5, both RI and RI yield similar results.

St111 other measures of risk inflation may be considered. For example, in-
stead of a ratio measure, one might consider the minimax regret difference
sups(R(8, By) — R(B, B,)); see Venter and Steel (1992). This criterion may be
unsatisfactory because for prediction risk it appears to allow the inclusion of a
large fraction of the X’s even when 8 = 0.

3. A canonical variable selection procedure. In this section we de-
scribe a canonical form for a variable selection procedure which enables us to
assess the risk inflation of the more commonly used selection procedures. We
consider here the case of 2 known in order to better expose the main issues.
It is seen below that the variable selection procedures AIC, C,, and BIC in this
case are all of this form. In Section 6 it is shown that when o2 is unknown, the
essential features of this canonical form and our analysis of it remain the same.

The general canonical selection procedure is defined as

(3.1a) Aq = argmin [SSE, + |v|o?1I],
YeT
where II > 0 is a prespecified constant,
(3.1b) SSE, = |Y — X,|?
and
(3.1¢) || is the number of nonzero components of v.

Because || is the dimension of the model selected by ~, the procedure v selects
that v which minimizes the residual sum of squares SSE, penalized by oI
times the dimension of the model. We shall refer to II as the dimensionality
penalty of the procedure ;.

Note that v depends in no essential way on the sample size n. This can be
seen by writing

SSE, =|Y - XB,,[* + |XB,,, - XB, ",
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which shows that only | X, ,6., - XE,,|2 which has p — |v| degrees of freedom,
plays arolein determlmng - We should also point out that in order to calculate
Y1, it is necessary, in principle, to calculate SSE, for every . This is a character-
istic of all the selection procedures considered in this paper. We plan to report
elsewhere on alternative methods such as forward stepwise selection which
have the computational advantage of examining fewer +; see Miller (1990).

Intuition behind ~y; is enhanced when X'X is diagonal. In this case v may
be expressed as

(8.2a) Yn=1{1,73,...,7;} where~}=1I[SS; > o1
and
(3.2b) SS; = (Xi'Y)z/(Xi'Xi), i=2,...,p.

Here, vy, is the familiar stepwise selection, and IT is the F-to-enter or F-to-delete
control parameter; see Miller (1990). Note also that here the computational
burden for evaluating «y; is greatly reduced.

It is easy to see that for 02 known, the variable selection procedures AIC, C,
and BIC are all special cases of gh in (3.1). We begin with the procedure pro-
posed by Akaike (1974) which maximizes the criterion AIC = log M., — ||, where
M., is the maximum likelihood of the model identified by . Akalke motivated
th1s criterion as an estimate of the expected Kullback—Leibler information of
the fitted model. For 02 known, Akaike’s procedure is easily computed to be

(8.3 Yarc = argmin AIC,  AIC = (1/20%) [SSE, + |v|0%2].
vy

Thus, v, is the special case of v with IT = 2.
The C, procedure, attributed to Mallows (1973), is given by

(8.4a) Y¢, = argmin Cp, Cp = [SSE,/0?] — (n — 2}7])
Y

for o known. Mallows motivated C, as an unbiased estimate for p, when all of
the “correct” predictors had been selected. Interestingly, he recommended using
graphical analysis of C, plots for variable selection and cautioned against the
pitfalls of using the automatic procedure Yc,- Nonetheless, it has become a
popular practical criterion. Rewriting C,, as

(3.4b) Cp =07 2[SSE, + |y|0?2] —n

shows that Ye, is identical to ya1c, the special case of v with IT = 2. That AIC
and C, are the same in this context was noted by Stone (1977).

Schwarz (1978) proposed the selection procedure which maximizes the cri-
terion BIC = log M., — (1/2)|y|log n, where M, is as in AIC. This criterion
was motivated as a large-sample version of a Bayes procedure. For o2 known,
Schwarz’s procedure is

(85)  +pic =argminBIC,  BIC = (1/20?)[SSE, + |y|o%(logn)].
vy

Thus, vp;¢ is the special case of v with IT = log n.
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4. The risk inflation of vy for X'X diagonal. This section investigates
properties of the risk inflation of y; when X’X is diagonal. Expressions are
obtained which reveal the relationship between the risk inflation RI(yy) and
the dimensionality penalty II. The risk inflation of the special cases AIC,C,
and BIC are then evaluated and compared. Finally, it is shown in Section 4.3
that IT ~ 2log p is optimal in the sense of minimizing the risk inflation of ~y;.
The risk inflation of 7; under general XX is investigated in Section 5.

4.1. The predictive risk of §7n. In order to obtain the risk inflation of 7y, we

require the risk of ,IB\.YH . We begin with the following expression for the predictive
risk of a general s/e procedure. Expanding (1.2), it is straightforward to see that
for X'X diagonal

(4.1a) R(B, By) =V (B, By) + B(8, By),

where

P
V(B,By) =Ep ) X[e)/IXil* = 0® + ) EpX[e) /X Tly; = 1],

(4.1b) Y=t P
B(B,By)=E Z (1%;16;)" Z IX:16:) “Ply; = 0.
7: i=

The terms in (4.1b) can be interpreted as follows. The “variance” component
V(B, B4) accounts for the risk of estimating the selected components. (Note

that the intercept is always selected.) The “bias” component B(g, E—,) accounts
for the nonzero components of 3 which were incorrectly set to 0.

As revealed by (3.2), the form of «; also simplifies when X'X is diagonal. To
apply (4.1) to -y in this case, note that SS; in (3.2b) may be expressed as
(4.2) SS; = (1X:18; + (X[e)/1%:])%.
Because (X/¢)/|X;| = 0Z where Z ~ N(0, 1), we can write

EsXle?/IX Il =1l =0 E[ [(]X|ﬂ,+aZ) > 021'1]],
(4.3)

(1%:18)°Ply; = 01 = (1X:18,)"P[(1X:16: + 02)” < o°11].
Inserting (4.3) into (4.2) yields

p
(4.4a) R(B, Byy) = 0%+ 0% R*(1Xi|B:/0, 1),
i=2
where
(4.4b) R'(,T0) = B[220 [+ 2 > 1] | + w?P[(w + 2)* < T1].

These expressions were previously considered by Mallows (1973) for IT = 2 and
by Miller (1990).
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FiGg. 1. The risk surface.

Note that each R* term in (4.4) depends only on w = |X;|3; /o and II. The first
term in (4.4b) is the variance component and the second term is the bias compo-
nent. Although not expressible in closed form, (4.4b) can be easily approximated
numerically. Figure 1 shows the surface R*(w, II). As will be proved later, it ap-
pears that the maximum occurs along a ridge, and is increasing as both w and
II increase. Slices of R*(w,II) as a function of w for fixed II = 0,1,2,3,4 are
pictured in Figure 2. Note that when II = 0, R* = 1 since in this case v is just
overall least squares «;g. As Il increases, R* decreases for small w but has an
increasing maximum.

Finally, it should be noted that the only distributional assumption needed
for (4.4b) and all of the results which follow is the normality of (X/¢)/|X;|. By
central limit theorem considerations, this assumption and hence virtually all
of our results will be robust against many departures from the normality of .
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FiG. 2. R*(w, 1) for various II.

4.2. The risk inflation of vg. The calculation and subsequent analysis of
the risk inflation RI(+;) using (4.4) is facilitated by first calculating the partial
risk inflation defined as

(4.5) RI(j, 7) = sup R(G, By)/jo* where B; = {8:|n] = j},
B € B;

the maximum risk over Bj, the set of §’s with exactly j nonzero components.
From (4.4), it follows that

(4.6) RI(j,ym) = 1/D[1+(p - HR*©O,ID) +(j - 1) sup R*(w, )],

a function only of IT and j. The risk inflation of «; is now easily obtained as

RI(yg) = max RI(j,vy) = RI(1,v) V RI(p, vp)
J

4.7)
= [1+(p - DR*(0,ID] v [1/p +(1-1/p) supR*(w,n)],

where V is the maximum operator. The two crucial quantities in RI(j, y;) and
RI(yy) are R*(0,1I) and sup,, R*(w, II).

The quantity R*(0,II) accounts for the error estimating 3; = 0 when fB\,\,n is
used. From (4.4b), one can see that R*(0,II) is composed exclusively of estima-
tion risk. For computational purposes, R*(0, IT) can be computed directly by

(4.8) R*(0, ID) = 2[vVTIg(VID) + &(-VID)],

where ¢ and ® are the standard normal pdf and cdf. Figure 3 displays R*(0, II)
which decreases exponentially from R*(0,0) = 1 as II increases. This decrease
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- II
2 4 6 8 10 12

Fic. 3. The component risk at 8; = 0 : R*(0,II).

is a manifestation of the feature that §; = 0 is less likely to be “incorrectly”
estimated when II is large. Some numerical values of R*(0, II) are presented in
Table 1.

The quantity sup,, R*(w, II) accounts for that w, when B%—; is used, which
yields the worst possible combination of estimation risk and bias risk in (4.4b).
Although a closed form expression for sup, R*(w,II) is unavailable, it follows
from Lemma A.1 in the Appendix that

(4.9) I - o(I1) < supR*(w, ) < [T+ 1.

(Lemma A.1 actually obtains an even sharper left-hand bound.) For practical
purposes, sup,, R*(w,II) can be easily obtained numerically. Figure 4 displays
this maximum risk, which increases almost linearly from sup,, R*(w,0) = 1
as II increases. This increase is a manifestation of the feature that bias risk
increases faster than estimation risk as Il increases. Some numerical values of
sup,, R*(w,II) are presented in Table 1.

Based on the values in Table 1, it is possible to calculate the RI(v;) using
(4.7) for a variety of I1. For p and IT large, it is perhaps more revealing to consider
the approximation of (4.7),

(4.10a) RI(vy) =~ p2vII¢(VII) VI,
which is based on

(4.10b) RI(1,vp) = pR*(0,1I) ~ p2v/TI( /I )
and

(4.10¢) RI(p,~p) = sup R*(w,1I) = 1I,

which in turn makes use of (4.6), (4.8) and (4.9). The approximate values of
RI(~y) using (4.10) are displayed in Table 2 for IT = 1,2, log n. As will be seen in
Section 6, the choice IT = 1 corresponds to maximizing adjusted R2. The choices
IT =2 and II = log n correspond to AIC/C, and BIC, respectively, as pointed out
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TABLE 1
The risk components
I R*(0,11) sup,, R*(w, IT)
0 1 1
5 918 1.099
1.0 .801 1.260
1.5 .682 1.448
2.0 572 1.650
2.5 475 1.862
3.0 .391 2.082
3.5 .320 2.307
4.0 .261 2.537
4.5 212 2.772
5.0 171 3.011
6.0 111 3.500
7.0 .0718 4.000
8.0 .0460 4517
9.0 .0292 5.045
10. .01856 5.581
15. .001816 8.399
20. .000169 11.39
25. .0000154 14.52
30. .00000138 17.76
II Large ~2v/TIS(II) ~II

in Section 3. Note that all of these offer substantially less risk inflation than
overall v; g, corresponding to II = 0, and which has RI(v;g) = p. Note also that
for II = 1, 2,log n, and large p, RI(v;) is decreasing in II.

4.3. For X'X diagonal, Il ~ 2log p is optimal. Although AIC,C,, BIC and a
variety of other «;’s may offer smaller risk inflation than v g, the issue arises
as to which IT minimizes RI(-yy). Consider Figure 5 which displays the partial
risk inflations RI(1,+y) and RI( p, vy) as functions of II for p = 2, 10, 100,
200. From (4.7), RI(-yy) is the maximum of these two curves at each II. For
smaller II, RI(yy) = RI(1, ) which appears to be exponentially decreasing,
and for larger II, RI(yy) = RI( p, 1), which appears to be linearly increasing.
The minimum occurs at the intersection of these two curves.

Using the approximation (4.10), the II which yields the minimum RI ap-
proximately satisfies p2v/TI¢(+/TI) = II. Although more precise solutions to this
equality can be obtained, it appears that

(4.11) II=2logp

is a reasonable candidate, and more than adequate for practical purposes. In-
deed, Table 3 provides strong support for the use of II = 2log p as an approx-
imation to the optimal II. The first two columns of Table 3 show remarkable
agreement for a wide range of values of p, between IT = 2log p and the optimal II
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FiG. 4. The worst possible component risk: sup R*(w, II).

(which was obtained numerically). The last two columns also show remarkable
agreement between the risk inflation value corresponding to II = 2log p and
the smallest available risk inflation available with a procedure of the form ~y;.

Because the optimal II satisfies RI(vp;) = RI(1, v) = RI( p, ), the approx-
imation (4.10) suggests that for optimal IT, RI(y) ~ sup,, R*(w,II) = II. Thus,
we might expect that for p large

(4.12) RI(y310g p) = 210g p.

The following result shows that for X’X diagonal, this approximation improves
asp — oo, and that 2log p is the smallest possible risk inflation for any selection
procedure ~, not just those of the form ~. The powerful implication of this
result is that for X'X diagonal, v,),4 , is asymptotically optimal (as p — oo) with
respect to risk inflation within the class of all variable selection procedures. The
optimal bound 2 log p has also recently been obtained in a related wavelet model
selection problem by Donoho and Johnstone (1994).

TABLE 2
The risk inflation of various procedures (The X'X diagonal case)
Method I R*(0,11) sup,, R*(w, I1) Risk inflation
LS 0 1 1 p
max adj R2 1 .801 1.26 ~p(.801)
AIC/Cp 2 .573 1.65 ~p(.573)
BIC logn =4/(2logn)/(wn) ~logn . ~logn ifp < vn
=~+/(2log n)/(xn) ifp > /n
General vy 1T ~2vTI(I) ~II ~p2vTIpD) v II

Y21og p 2logp =~+/(4log p)/(np)? ~ 2log p ~2log p

General ~ >2log p — o(log p)
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RI p=2 RI p=10
10 10
8 8
6 6
4 4
2 2
2 4 6 6 10 12 14 ¢ 2 4 6 6 10 12 11 ¢
RI p=100 RI P =200
50 50
40 40
30 30
20 20}
10 10}
2 4 6 8 10 12 14 = 2 4 6 8 10 1z 14 =

Fic. 5. RI(yrp) = RI(1, vrp) ARI(p, v17). Note: In each figure RI(1, ) is the downward sloping curve
and RI(p, vry) is the upward sloping curve.

THEOREM 4.1. For X'X diagonal,

(i) RI(7310g p) < 1+2log p.
(ii) For any v,RI(y) > 2log p — o(log p).

ProOF. To prove (i), from (4.7) it suffices to show that RI(j, 751,) < 1
+2logp forj=1andj=p. By (4.6) and (4.8),
RI(1,792105 ) < 1+pR*(0,210g p) < +p2+/2l0g p#(+/2logp)

<1++/(4logp)/m <1+2logp.

By (4.6) and (4.9)

RI(p, Y2105 p) < SUpR*(w,2log p) < 1+ 2logp.
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TABLE 3
The risk inflation when I1 = 2 log p (The X'X diagnoal case)
p n=2logp BEST IT RI(v310g p) inf RI
1 0 — 1.00 1.00
2 1.39 2.62 1.71 1.46
3 2.20 3.11 2.06 1.75
4 2.77 3.48 2.28 1.97
5 3.22 3.78 2.44 2.15
6 3.58 4.03 2.55 2.29
7 3.89 4.25 2.64 2.42
8 4.16 4.44 2.71 2.53
9 4.39 4.61 2.77 2.62
10 4.61 4.77 2.82 2.71
15 5.42 5.38 3.07 3.05
20 5.99 5.83 3.37 3.29
30 6.80 6.47 3.81 3.64
50 7.82 7.30 4.36 4.09
100 9.21 8.46 5.12 4.72
200 10.60 9.64 5.88 5.37
500 12.43 11.24 6.91 6.25
1,000 13.82 12.47 7.71 6.94
10,000 18.42 16.65 10.43 9.37
100,000 23.03 20.92 13.28 11.96
1,000,000 27.63 25.25 16.22 14.69
10,000,000 32.24 29.63 19.24 17.52
To prove (ii),
RI(y) = max RI(j, v)
= max( jo?) ! sup R(B, B)
J BEB;

> max ((G — 1)/j)[21og p — o(log p)] > 21og p — o(log p),

> max

J

(jo?) " 'o%[2(j — 1) log p — o(log p)]

where the first inequality makes use of supg ¢ B; R(p, B,,) > o?[2(j — 1) logp
— o(log p)l, a special case of Lemma A.2 in the Appendix. O

A feature not brought out in the proof of Theorem 4.1 is that Lemma A.2

shows

(4.13)

sup R(6, ) > 0*[2(j — 1) log p — o(log p)].
€B5;

for any estimator 3. As a result, the lower bound provided by (ii) above applies
to the predictive risk of any estimator 3, not just an s/e estimator. Thus, going
outside the class of s/e estimators offers no improvement in risk inflation.
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As discussed in Section 2, a reasonable alternative definition of risk inflation
is RI in (2.7). The following result for RI _is very similar to Theorem 4.1 and
shows that II ~ 21log p is also optimal for RL

THEOREM 4.2. For X'X diagonal,
@) Rl(yy) < 2logp +o(log p) for I =2logp +2,/2logp + 1.

(i) For any ~, ﬁI(*y) > 2log p — o(log p).
J

Proor. It follows from (2.7) and (4.4a) that

—~ 1+ Zp R*(wq, II)
4.14 RI = .
( ) (ym) = sul,)w,, 1+37% , min(wiz, 1)

It can be shown using (4.4b), (4.8) and (4.9) that for Il = 2log p + 2,/2logp + 1,

R*w,) =w?+0(1/p) forw? <1,
(4.15) .
R*w, I <MI+1 for w® > 1;

part (i) follows by combining (4.14) and (4.15). Part (ii) follows immediately
from (ii) of Theorem 4.1 and the obvious fact that for any +, RI(’y) > RI(y). O

5. Risk inflation bounds for general X'X. In the general case where
X'X is not necessarily diagonal, simple expressions for RI(+;) seem unavailable.
Furthermore, the optimal value of II for y; depends on the correlation structure
of X'X. The following result shows however, that useful upper bounds for the
risk can be obtained, and that for large II, these bounds are similar to the
diagonal case.

THEOREM 5.1. Define ¢ = v/Tle ~/2, For any vy,
6) R(B, Byy) <po®(VI+1)%

(i) R(B, Byy) < 20%||(I1 + 1) + 024v/Z(T1/(T1 — 1)) %ePé \/pE .
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PRrROOF. See the Appendix.

The risk bound in (i) above is useful for II small (about II < 2logp —
2log log p), whereas the bound in (ii) is useful for II large (about II > 2log p +
2log log p). The second bound is particularly useful for large p as indicated by
the following corollary.

COROLLARY 5.2. IfII > 2 log p + 2 log log p, then as p — oo,
6) R(B, Byy) < 022[n|(I + 1) +o(1).

(ii) | RI(yp) < 20T+ 1) +o(1).

Proor. Part (i) follows from (ii) of Theorem 5.1 and the observation that
£=vTel~M/2 = o(p~1) as long as IT > 2log p + (1 +¢) log log p for some ¢ > 0;
(ii) follows immediately from (i). O

For general X'X, the smallest bound on RI(y;) obtainable from Corollary 5.2
occurs for II =~ 2logp, (2loglogp will be small), which for large p is about
4 log p, twice that in the diagonal case. The next result shows that in fact this
choice is asymptotically best for at least the worst possible X. In this sense,
Y2 10g p 1S asymptotically safest. Of course, for particular known X, a better choice
of IT may be obtained numerically.

THEOREM 5.3. For any II, supyx RI(yy) > 4log p — o(log p).

Proor. It follows from Lemma A.5 in the Appendix that X and § can be
chosen such that for any integer 1 < j < p, supy RI(yy) > ((j — 1)/))4logp —
o(logp)). O

6. Unknown o2. In this section we consider the case of unknown ¢2. In
this case, many of the popular selection procedures including AIC, C, and BIC
are of the canonical form

(6.1) vy = argmin [SSE, + ||o%0],
Y€ET

where II > 0 is a stochastic dimensionality penalty and SSE., and |y| are as
in (3.1). As opposed to II in the canonical procedure vy in (3.1), flis not a
prespecified constant but rather a random variable which depends on the data.
However, for the procedures we examine, IT will converge to some II in some
sense as n — 00, SO that for large n, vy will behave like the corresponding ~yy;.

For example, when o? is unknown, the C, procedure is modified by substi-
tuting an estimator of o2. This estimator is typically

(6.2a) 625 = |Y — XBy,,|/(n - p),
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yielding

(6.2b) Yc, = argminCy, C,= [SSE,,/&‘I%S] — (n=2}y)).
v

Rewriting

(6.2¢) C, = E{‘SZ [SSE, + |7|&fs2] -n

shows that using v, corresponds to vz with fi=25 25/0?. Here 1 - 2, so that

for large n, this procedure agrees with v, in (3.4a) for o2 known.
Slmllarly, the procedures AIC and BIC are shown to be of the form (6.1).
When o2 is unknown, Akaike’s procedure is

(6.3) Yarc = argminAIC,  AIC = (n/2) log(SSE, /n) + |v|.
vy

Reexpression of (6.3) shows that vy, c is v with IT = 2 + O[(SSE,, _/ no?) — 112
— 2, agreeing with ~,;c in (3.3) for large n. When o2 is unknown, the BIC
procedure is

(6.4) ~gic = argmin BIC, BIC = (n/2)log(SSE, /n) + (1/2)|v|(log n).
v

Reexpression of (6.4) shows that yp¢ is v with
= logn+ OISSE,__ /no?) —1]2 — logn,

agreeing with vgic in (3.5) for large n.

It is useful to note that other commonly used selection procedures can only be
expressed in the form (6.1) and not (3.1). For example, consider the well-known
procedure of maximizing adjusted R? [Theil (1961)] or equivalently minimizing
the residual variance estimate, namely

“YBIC

SSE., /(n — .
(6.5a) Yop2 = arg‘:nax ll - W}] = arg;mnSSEv/(n - |’Y|).
Rewriting
(6.5b) SSE'Y/(n - |7|) =n"" [SSE’Y + |’Y|(SSE7/(n - |’Y|))]

shows that ~y,z. corresponds to using vy with M= SSE_,/(n — |Y.52|)0%. Here

I — 1, so that for large n, maximizing adjusted R? corresponds to using yp
with IT = 1.

All of these procedures have stochastic dimensionality penalties which are
relatively stable and converge (in some sense) as n — co. Similarly, many other
popular variable selection procedures, such as those mentioned the Introduc-
tion, can also be put in the form -, with similarly stable and convergent II.
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Effectively, the main difference between all of these procedures has to do with
the relative sizes of the limits of their respective ITs.

The following result shows that all of our previous results about the risk and
risk inflation of procedures of the form ~; are limiting cases of similar results
for the correspondmg v ;- More precisely, as long as Mis independent of ﬂ’hs for

all v and 11 converges in L, to some IIj, then « 5 is asymptotically equivalent
to vy, in risk and risk inflation.

THEOREM 6.1. Suppose that 11, is independent of ﬁ-,w and that for some
I, E|fI; — Il - 0as & — co. Then

(i) Sgp |R(ﬁ’ B’Yﬁk) "R('B’ E’Yno)i — 0.
(ii) RI('yﬁk) — RI(7yy, ).

ProOOF. See the Appendix.

7. Conclusion: a new variable selection procedure. Because of
Theorem 6.1, when 02 is unknown and (n — p) is reasonably large, we rec-
ommend the selection procedure

(7.1) YRIC = argnrl‘in [SSE, + |yl5is(210g p)],
Y€

where we have labeled RIC for nsk inflation criterion. This procedure is the
special case of v in (6. 1) with I = ULs (2log p)/o?. As is well known, the unbi-
ased variance estimate 7 in (6.2a) is independent of the overall least squares
estimate ﬂym. Furthermore, EIH 2logp| — 0 as n — oo. Thus, application
of Theorem 6.1 to «yg;c shows that as n increases, the risk properties of vg;c
converge to those of vy, with ITy = 21og p.

Appealing to the results of Section 4, the risk inflation of g, will be asymp-
totically close to optimal in the orthogonal case and distributionally robust.

APPENDIX

. To improve the readability and flow of the main text, the proofs of the main
theorems, as well as some necessary lemmas, have been placed in this appendix.
However, as elaborated in the Introduction, many of these results may also be
of independent interest and useful elsewhere.
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We begin with the following result which yields the bounds on sup,, R*(w, IT)
stated in (4.9) and is key to the proof of (i) of Theorem 4.1.

LeEMMA A.1. TI —24/2ITlog II + o(1/2ITlog II) < sup,, R*(w,II) < 1 +II.

Proor. Let Z ~ N(0,1) throughout. Let us first show the right-hand
inequality. We will show this for IT > 12. It is straightforward to strengthen
this proof for smaller II, although for small II, the inequality is obvious from
Figure 4. Without loss of generality, assume w > 0. If w? < II,

R*w,ID < 1+w?P[(w+2Z2P2 <T| <1+w? <1+IL

If w? >1I,
R*w,TD) < 1+w?P[w +2)? <II]
< 1+w?o(VII - w)
(A.la) = 1+ (22 + 20V/II + 1) B(—x)
(A.1b) < 1+T11/2 + (62 + 22v/IT) &(—x)
(A.1c) < 1+11/2 + (x + 2VID(x)
(A.1d) <1+I0/2+1+0/4 <1+11,

where (A.1a) makes use of x = w — V/II, (A.1b) makes use of &(—x) < 1/2 for
x > 0, (A.1c) makes use of &(—x) < ¢(x)/x and (A.1d) makes use of x¢(x) < 1 and
2/Tp(x) < I1/4 if TT > 12. We now proceed to show the left-hand inequality:

(A.2a)  supR*w,II) > supw?P(Z < VII — w)
w w

> sup (IT — 2V +x%) D(x)

x>0
> (IT — 24/2ITlog II + 2 log I)®(1/2 log II)
(A.2b) > TI(1 — 2+/21og TI/TI + 2 log TI/IT) (1 — 1/1)

= II — 2/2I log II + o(+/2IT1og 1),

where (A.2a) uses E[Z2[[(w + Z)?2 > 1I]] > w?P|Z < —w — VII] + E[Z%] [Z >
w — VI > w?P[Z < —w — V1), and (A.2b) follows from &(+/2TogII) > 1 —
#(+/2log I)/+/2log I > 1 - 1/II. O

The next result is the cornerstone of the proof of (ii) of Theorem 4.1.

LEMMA A.2. For any estimator E , when X'X is diagonal,

sup R(B, B) > o*[2(j - Dlog p — o(log p)].
€B,
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ProOF. We assume wlog that X’X =I and o2 = 1. Furthermore, by suitable
rotation we can assume that Y; ~ N(§;,1),i =1, ..., p, and Y; ~ N(0,1),
i=p+1,...,n, all independently. Thus, we can assume that 5 depends only
on Yy, ..., Y,. Finally, for notational convenience we let £ = j — 1 throughout.
Define A, , C Bj by

Apo={B:61=0,6=00rafori=2,...,p, and (#3;#0) = k}.

Then for any a,

(A.3) sup R(ﬁ,ﬁ)> max R(ﬂ,ﬂ)
BEB; BEA,,

We now proceed to show that there exists a sequence {a, } (to be specified below),
such that

(A.4) ,max R(B, B) > 2klog p — o(log p).

k, ap

Coupled with (A.3), this will establish the desired result.

From here on, suppose 8 € A 4, Since p; = 0 for such 3, we set ﬁl = 0.
Our construction of {a,} to satisfy (A.4) now proceeds by augmenting the data
Ys,...,Y, with anew set of random variables. This is done in such a way that we
are then able to extract from the augmented data a set of sufficient statistics for
the §;’s. It is then shown that the optimal estimator based on these sufficient
statistics (which dominates any estimator based only on Yy, ...,Y};) has risk
bounded below by the r.h.s of (A.4).

We begin by constructing 0, 1 random variables Iy, ..., I, (depending on [,

.., Bp) such that when I; = 1, Y; carries no information about g;. Consider
another sequence {a,} (to be specified below). When 3; = ap, let

Ii =I[Yi S ap].

For such i, Y; | ; = 1) is N(ap, 1) truncated at o;,. When §; = 0, let

- #op) Y —ap)
P(li=11Y) =1l¥; < epl g =05 =5y

Using a rejection sampling argument, it follows that here too, Y; | (; = 1) is
N(ap, 1) truncated at op. Thus, when [; = 1 the distribution of Y; does not depend

on ﬁi.
Now define the p indicator variables

J= 1, iffor somei,Y; > o5 and §; = ay,
~ 10, otherwise,
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- {I ; ifJ =0,
PTG #0], ifd =1
Note that I = 0 implies that §; = 0. When I/ = 1 and J = 1, then §; = a,.
However, when J = 0, the conditional distribution of Y; | I} does not depend on
B;- Thus (I}, J) is sufficient for ;.
As a consequence of this sufficiency, any estimator 3(Ys, . .. ,Y,) which is a

function of Yy, ..., Y, can be dominated in risk by an estimator g {Tgy .-y Iy, )
which is a function only of I, . .. yIy, J. In particular, it is straightforward to
show, using symmetry considerations and the fact that 8 € A, ,, [so that (#5;
# 0) = k], that the best such estimator is

b
By, ... I, ) =1 —J) [I{apk ZI{} +Jla,.
i=2

Thus, for any estimator E(Yz, e, Yp),

(A.5) ﬂ?ﬁpR(ﬁ, B)> jmax R(B, ).

k,ap

We now proceed to obtain a lower bound for the right-hand side of (A.5). Let
M, = (3F_,I;) — k be the number of Y;’s with I; = 1 and 3; = 0. Note that M, is
Binomial [¢(cy)®(cp — @p)/¢(0p — ap), p — k — 1]. Thus, for g € A, ,,,

R(B,B") = Eg|B* - BI* = Ep|B* — BIIIJ = 0] + E| B* — B*I[J = 1]

p P 2
=Ep) Hlfapk/ZI{} —ﬂl} I[J =0]
i=1 i=2
P 2
=Ep Ha,,k/ZIgJ —,8,} I[J =0]
i=2

I'=1
12

=Epy [[aph/M, + b)) - ] ‘=0l

L=1

(4.6) = a2Eg [k[M, /M, + ))* + M, [/, + B))*| 11T = 0]
= a2k Eg[M, /(M + B)|I1J = 0]
= a2k [E[M, /M, + B)] - Eg[My/(Mp + ]I = 1]]
> aZk[1— Eg[k/(M, + b)) - PIJ = 1]].

Now “let

(A7) ap =+/2logp —loglogp and oy =a,+(1/2) log log p.
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For these choices, o), — a, — oo which yields P[J = 1] — 1, and
EMp] =(p -k — Do) (0 — ap)/dlap — ap) — o0,
which yields Eglk/(M,, + k)] — 0. Thus, for a, and o, in (A.7),
(A.8) a2k [1 — Eplk/(M, + k)] — PIJ = 1]] = 2k log p — o(log p).
Coupled with (A.6), (A.8) yields (A.4). O
The next result is the key to the proof of (i) in Theorem 5.1.
LEMMA A.3. For v g =(1,1,...,1) asin (1.5) and vy as in (3.1),

(A.9) X8y, — X8| < (pa®ID¥? + |XB,  — XB|.

ProoF. From the definition of v, it follows immediately that
SSE,_ + [yyl|o®II < SSE., +po?ll,
which implies
[X By, — XBys|* < po”IL
Inequality (A.9) now follows from the triangle inequality. O

The next result is the key to the proof of (i) in Theorem 5.1.

LEMMA A.4. Define Wy(a) = Elx} | x; > X} 1 ,)- Then for o =1,

(A.10) R(B, By,) < 2|+ +2> [ZWM (Pl =11) - |’7|H]P[’Yn =1l.
Y

Proor. We begin by rewriting the risk of Zi:,n as

R(B, Bry) = Ep | XBy, - X6[" = 3 Bp (X, - Xp|'Ter = ).
Y

We shall now bound each term |X, E.y — Xp|?. As in Figure A.1, define
a=|XByy - XBy|,  b=|XByy—XB,|, . c=|XB,-X8,

where X ﬁ.,,, is the projection of Y onto the space spanned by those X;’s specifie
by « and/or 7. Using the obvious fact that | X3, — X3| < a + (b2 + c?)}/? and the
inequality (x + y)? < 2(x? + y2), we have

(A.11) X B, — X8| < 2(a® +b2 +¢?).
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Y

other Y Space
dimensions

hEY
Saa
RN

n space

Fic. A.1.

Now from the definition of vy, (SSE, + |v|II) < (SSE,, + |n|II) on the set [y = 1].
Combined with the identities SSE, = a? + |Y — Xf3,,|? and SSE, = b2 + |Y
— XB.y|?, it follows that on [y = 4],

(A.12) a’ + Y|l < &2 + [IL.
From (A.11) and (A.12), we have that on [y = 7],
(A.13) | X By — XBI? < 2(2b% — |y[TT) + 2(c* + [n|IT).
Now note that

Ep(b%Ilyn = 1) = Eg(b? | [yn = v1)Plyn =11
(A.14) < Wiy (Plyn = 71)Plyn =]

since for k& = |yn| — |n|,

_ 2 _ 2 A2
Wk(a)_mz?(l/la& {E[x“A]}-A;&;)):a {Eﬁ[lXﬁ-m Xy |A]}

a

and for i <j, Wi(a) < Wj(a). Combining (A.13) and (A.14) yields

- E5(1XB, - XBP Il =) < 2[2W,.,| (Pl =11) - |’Y|H]P[’Yn =1]
(&.15) +2E5(c*Ilym = 1) + 2[n[TIP [yn = ).

Summing (A.15) over v and using the fact that Esc? = |7| yields (A.10). O
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THEOREM 5.1. Define ¢ = V/Tle = /2, For any ~y,

@ R(B, By,) < po*(VI+ 1)

(i) R(B, Byy) < 20%0|(I1 + 1) + 0?4V/2(IT/(I — 1)) ¢4 /pE.

ProoF. To prove (i), insert (A.9) of Lemma A.3 into R(, B’yn) = Eg|lX B’Yn
— X3|2; (i) then follows directly.

To prove (ii), we consider the case 02 = 1 for simplicity. The extension for
general o2 is straightforward. From (A.10) of Lemma A.4, we have

P
(A.16) R(B, E.yn) <2pM+1)+2 Z (Z) maaxa(Wk(a) — EII).
k=1

Bounding the term inside the summation yields

max a(Wk(a) - kH) = max ” (y — kH)dP[X,% < y]

2
Xk, l1-a

=/ (y — kNP <]
kI

= Ck/ (y — kIl)e™?/2+®/2=Dlogy g,,
kI1

(A.17) < Che~#11/2+(k/2= D) log kTl
(o0}
X /k (y _ kH)e_(y — EII)(RII — k +2)/2kI1 dy
II

= Cre MV2(RIT*/2 = L [2RIT/(kTT — k + 2)]°
< [2I/(T — 1))*CreM/2(RIT)/2,

where C;, = 27%/2/T'(k/2), and the first inequality in (A.17) made use of the
fact that —y/2 + (/2 — 1)logy < —kII/2 + (/2 — D)]log kIl — (y — EID)(RII —
k + 2)/2FII. Putting (A.17) into (A.16) yields

P
(A.18) R(B, By, ) < 2/n|(IT + 1) + 8[I1/(T — 1)]” {Z (‘Z)Cke—km(kn)km
k=1

Using Stirling’s formula, it can be shown that C,k*/2 < /k/2¢*/2. Letting
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= /T~ /2 (for notational convenience) and bounding the summation in
(A.18) yields

p

, Z (1}: ) Che~F/2(RITyH/2

k=1

ské(:)\/kﬁék
_ <1+g>p§(k)m[“€]k[l%§]p_k

k=0

< (L +8)P/pE/2(1 + &) < ePC/pE/2(1 +€) < ePE+/pE/2.

Inserting (A.19) into (A.18) yields

(A.19)

R(B, Byy) < 2|l + 1) + 4V2[I/(T - 1)] %P4 /pE,

which is exactly the conclusion (ii). O

The following result is the basis for the proof of Theorem 5.3. For the sake of
brevity, the proof is only sketched, leaving the details to the reader.

LEMMA A.5. For each 11, there exist X and (8 such that

(A.20) R(B, Byy) 2 o*[(Inl - 1)41og p — o(log p)].

Proor. ForIl < 2log p — 2log log p, it suffices to consider the case where

X is orthogonal and appeal to (4.7) and (4.8).
For IT > 2log p —21og log p, the bound (A.20) can be obtained by constructing
a “maliciously collinear” X of the form X = [X;,, X!, X2, ..., X], where X,
=(1,...,1Y,each X/ = [X’, ..., X, ] isn x m and Xy, X%, ..., X are orthogonal.
(Since X isn xp, Mm + 1 =p.) For this X, consider 3 of the form 3=(0, e,...,e),
where e = (0,...,0,1). Thus, only the M coefficients of X}, ..., X¥ are nonzero.
To obtain poor performance with this setup, the 1dea is to distribute le,
XJ _, about X7, for each j, so that with high probability vy substitutes an
“incorrect” XJ for X2,, and the bias from such a substitution is substantial. This
is obtained when, for each j, X Y e X’ _, are uniformly distributed on the
surface of a d-dimensional sphere, d = 2logp — (log p)*/4, of radius r = v2d
which is centered at Xf,, and is orthogonal to X’m It can then be shown ‘that for
IX%,| large enough, the probability of an “incorrect” substitution for X, is ~ 1
— (1= &(—Vd))P™ _ 1 as p — oo (for M fixed). This yields R(, ﬁ.,n) ~ o2Mr?

which in turn yields (A.20). O
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The following result is required for the proof of Theorem 6.1 which is given
afterward.

LEMMA A.6. For any fixed 11y and € > 0, § can be chosen such that for
IH - HOI < 6’

Sl;p |R('B’ B’Yn) _R('B’ B’YHO)I <E.

PRrOOF. Define A5 = {IL:|II — IIy| < 6} and A} = {Y: yn # v, for some
IT € As}. Now for any IT € As,

= ]Eﬁ“Xan -xp* - |X3‘m0 ‘XﬂIZH
< |Es[|xBy,, - XB|" - |XBy,, - XB|"|IIY € 43)
< EgWIIY € A3,

|R(8, ) = R(5, B, )

where W = (0 1/2p(Ily +6) + | X B’Yls — X3|2)%. This last inequality is obtained
from (A.9) of Lemma A.3. Because W does not depend on 3 and has finite mean,
it suffices to show that

(A.21) supPslY € A3] -0 asé— 0.
B
Define
{Y: SSE, + |y|0*I = SSE.. +|y/|0211}, if XB, # XB,
Sy, y,m =
D, otherwise.
Because

Ascly U Svvm

¥, IIEA;
it suffices to show that for each v, 7/,
(A.22) supPB[ U S,,,.,/,n] -0 as§— 0.
IeA;

Each nonempty S.,, ,» n may be expressed as S, = {Y:Y'M,, .Y =1II}
where M., . is a real symmetric matrix, so that

U S,y, IS {Y‘ YIM’Y, rle € A5}
II€As
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Based on a diagonal decomposition of M, ./, we may write Y'M.,, .Y = X"_,\;,Z?

where Ay, ..., A, are the eigenvalues of M, . and Zy, ..., Z, are independent

normal random variables with possibly different means depending on 8. [(Z;,
.» Zy,) = UY for some orthonormal U.] Assuming (wlog) that A\; # 0,

SupPgl: U S7 ~! r[:l = supP,@[Y'MA, ’y/Y €A5]
IIEA;

(A.23) = Sup Pg [Z )\1Z2 € Ag:l

i=1
< sup supPs[\1Z2 € [a — 6,a + 6]].
B a

Using standard methods, it is straightforward to show that the last term in
(A.23) goes to 0 as § — 0. This shows (A.22) which in turn shows (A.21). O

THEOREM 6.1. Suppose that ﬁk is independent of Zi:hs and that for some I,
E|Il;, — IIy] — 0 as k — oco. Then

@) Sl;;p |R(:3’ B"/ﬁk) —R(ﬂ, B’Yno)l —0;
(ii) RI(vg,) — Rl(ym,).

Proor. For é§ > 0, define A = {II: [II — IIy| < 6}. Let Gy, be the probability
distribution of Hk Because of the independence assumption on I'Ik,

sup [R(6, By ) ~ (6, Brg, )|

sup| [ R(5, Br) ~ R(5. Bry,) 46K
B 0

B ~ ~
< sup [ |R(B, By,) ~ R(6, B, )| dGAD
B Jo

IA

sup l:/ 'R('B’ B’Yn) _R('B’ 'B\’Yno),de(H)
B A

(A.24) R R
+ /A R(, By,) dGy(I) + /A R(B, By, ) G

IN

/ASLﬁIp IR('B’ B"/n) - R('B’ B’Ym,) | de(H)

+ sup /A R(B, Byy) dGH(ID + R(B, By, )P(EL, € A
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We shall now show that for any ¢ > 0, § and K can be chosen so that for
k > K, the sum of these last three expressions is s less than e. By Lemma A.6, §
can be chosen small enough so that supg |R(B, 'B'Yn) R(3, 'B'Yr[ )| <e/3 onA.

Thus for all %,
(A.25) /A sup |R(8, By,) ~ (8, By, )|4GH(ID < (e/3)P(Ty € 4) < /3.

For the second expression, note that by Theorem 5.1, we may select ¢, and cg
such that R(3, ﬂ,, ) < ¢1I1 + ¢g for some c; and c,. By the convergence of Hk, we
can choose K’ so that for £ > K’,

sup / R(B, By, ) dGy(D)
B JA
< / (c1T + ¢5) dG4(ID)
A

(A.26)

IA

o / ITT — To| AG(ID) + (exT + co)P(T, € &)
A

IN

c1E(T, — To| + (e1TTp + co)P({1, € A) < /3.

For the third term, again because of convergence, we can choose K” so that for
k 2 KN’

(A.27) R(B, By, )P € A) < ¢/3.
Finally, combining (A.24)—(A.27), it follows that for £ > K = max{K’,K"},

sup [R(B, By, ) ~ R (B, By, )| <

which proves (i). Conclusion (ii) is immediate from this and the definition
of RI. O

REFERENCES

AKAIKE, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math. 22 203-217.

AKAIKE, H. (1974). Anew look at the statistical model identification. IEEE Trans. Automat. Control
19 716-723.

ALLEN, D. M. (1971). Mean square error of prediction as a criterion for selecting variables. Tech-
nometrics 13 469-475.

ALLEN, D. M. (1974). The relationship between variable selection and data augmentation and a
method for prediction. Technometrics 16 125-127.

COHEN, A. (1965). A hybrid problem on the exponential family. Ann. Math. Statist. 36 1185-1206.

DoNoHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika 81 425-456.

HANNAN E. J. and QuINN, B. G. (1979). The determination of the order of an autoregression. J.
Roy. Statist. Soc. Ser. B 41 190-195.

HockINg, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics 32
1-49.



RISK INFLATION CRITERION 1975

MaLLows, C. L. (1973). Some comments on Cp. Technometrics 15 661-676.

MILLER, A. J. (1990). Subset Selection in Regression. Chapman and Hall, New York.

RISSANEN, J. (1986). A predictive least squares principle. IMA J. Math. Control Inform. 3 211-222.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.

SHIBATA, R. (1981). An optimal selection of regression variables. Biometrika 68 45-54.

STONE, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s
criterion. J. Roy. Statist. Soc. Ser. B 39 44-47.

THEIL, H. (1961). Economic Forecasts and Policy. North-Holland, Amsterdam.

THOMPSON, M. L. (1978a). Selection of variables in multiple regression. A review and evaluation.
Internat. Statist. Rev. 46 1-19.

THOMPSON, M. L. (1978b). Selection of variables in multiple regression. II. Chosen procedures,
computations and examples. Internat. Statist. Rev. 46 129-146.

VENTER, J. H. and STEEL, S. J. (1992). Some contribution to selection and estimation in the
normal linear model. Ann. Inst. Statist. Math. 44 281-297.

WEI, C. Z.(1992). On predictive least squares principles. Ann. Statist. 20 1-42.

ZELLNER, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley, New York.

DEPARTMENT OF STATISTICS DEPARTMENT OF MANAGEMENT SCIENCE
UNIVERSITY OF PENNSYLVANIA AND INFORMATION SYSTEMS
PHILADELPHIA, PENNSYLVANIA 19104-6302 UNIVERSITY OF TEXAS

AvusTIN, TEXAS 78712-1175



