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Abstract

A learning rule is uncoupled if a player does not condition his
strategy on the opponent’s payoffs. It is radically uncoupled if the
player does not condition his strategy on the opponent’s actions or
payoffs. We demonstrate a simple class of radically uncoupled learning
rules, patterned after aspiration learning models, whose period-by-
period behavior comes arbitrarily close to Nash equilibrium behavior
in any finite two-person game.

1 Payoff-based learning rules

In this paper we propose a class of simple, adaptive learning rules that depend

only on players’ realized payoffs, such that when two players employ a rule

from this class their period-by-period strategic behavior approximates Nash

equilibrium behavior. Like reinforcement and aspiration models, this type of

rule depends only on summary statistics that are derived from the players’

received payoffs;1 indeed the players do not even need to know they are

involved in a game for them to learn equilibrium eventually.

To position our contribution with respect to the recent literature, we

need to consider three separate issues: i) the amount of information needed

to implement a learning rule; ii) the type of equilibrium to which the learning

process tends (Nash, correlated, etc.); iii) the sense in which the process can

be said to “approximate” the type of equilibrium behavior in question. (For

a further discussion of these issues see Young, 2004)

Consider, for example, the recently discovered regret matching rules of

Hart and Mas-Colell (2000, 2001). The essential idea is that players ran-

domize among actions in proportion to their regrets from not having played

those actions in the past. Like the regret-testing rules we introduce here,

1See, for example, Bush and Mosteler, 1955, Erev and Roth, 1998; Karandikar,
Mookherjee, Ray, and Vega-Redondo, 1998; Börgers and Sarin, 2000; and Bendor,
Mookherjee, and Ray, 2001.
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regret matching can be set up in such a way that players use only their re-

alized payoffs to estimate the regrets, hence they need have no knowledge of

their opponents’ payoffs or their actions. However, these rules approximate

equilibrium behavior in a rather weak sense: although the joint empirical

distribution converges to the set of correlated equilibria, nothing guarantees

that period-by-period behavior comes close to Nash equilibrium or even to

correlated equilibrium.2

A second class of learning procedures that are closely related to the

present proposal are the hypothesis testing rules introduced by Foster and

Young (2003). In this approach, players act like classical statisticians, test-

ing alternative hypotheses about their opponents’ behavior against data, and

rejecting if the behaviors are improbable given the hypothesis. When a re-

jection occurs, a new hypothesis is chosen at random from a suitable space of

hypotheses, say those that attribute stationary strategies of bounded recall to

the opponents. These procedures lead to period-by-period behavior that ap-

proximates Nash equilibrium behavior in the following sense: the parameters

can be chosen so that at least 1− ε of the time the players’ strategies consti-

tute an ε-equilibrium of the stage game (Foster and Young, 2003). However,

the behaviors do not necessarily converge to an ε-equilibrium, or even to the

set of ε-equilibria; they are close to equilibrium a large fraction of the time.

More importantly for the purposes of this paper, hypothesis testing assumes

that the opponents’ actions are observable, because this is how a player tests

whether a hypothesis about the opponent’s behavior is likely to be valid. In

other words, hypothesis testing is an uncoupled process but not a radically

uncoupled one.

It is, in fact, quite difficult to design decentralized learning rules that

lead to Nash equilibrium behavior without making some compromises about

the form of learning or the form of convergence (or both). Hart and Mas-

2There are many different rules that cause the joint empirical frequency distribution
to converge to the set of correlated equilibria; see for example Foster and Vohra, 1999;
Fudenberg and Levine, 1995, 1998; and Cahn, 2004.
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Colell (2003) have shown, for example, that there exists no deterministic

adjustment process that (like fictitious play) depends only on the empirical

frequency distribution of past play and not in any way on the opponent’s

payoffs, and that causes the empirical frequencies to converge to Nash equi-

librium in every finite game. More recently they have shown that there is no

way to achieve almost sure convergence to Nash equilibrium (or even to ε-

equilibrium, for small enough ε) if the players use stochastic adjustment rules

that are stationary, uncoupled, and of bounded recall (Hart and Mas-Colell,

2004).

These negative results apply to a wide class of learning procedures that

are, in one way or another, boundedly rational. What happens when players

are perfectly rational, that is, they update their beliefs according to Bayes’

rule and always choose optimal actions given their beliefs as in Kalai and

Lehrer (1993)? Unfortunately this leads to difficulties when the payoff func-

tions of the opponent are unknown. In fact, one can construct games of

incomplete information such that, with probability one, rational Bayesian

players have period-by-period behaviors that are far from Nash equilibrium

a very high proportion of the time. Furthermore this can happen even when

the priors about the unknown payoffs are correct ex ante (Jordan, 1991, 1993;

Foster and Young, 2001).3

The aim of this paper is to demonstrate a very simple class of learning

procedures that fit into the gap between these positive and negative results.

In particular, they are radically uncoupled and approximate Nash equilib-

rium behavior, though they need not converge to any single Nash equilibrium.

When the parameters are tightened at a suitable rate, one obtains conver-

gence in probability to the set of Nash equilibria.

3For another critique of Bayesian rational learning in repeated games see Nachbar
(1997, 2003).
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2 Regret testing

We shall first give an informal description of the approach that emphasizes its

computational simplicity and complete lack of dependence on the existence

of other players. In the next section we state the main result.

Consider an individual who lives alone. At regular intervals he chooses

an action from a finite set X of m possible actions. The names of the actions

are written on slips of paper that are stored in a hat containing h papers.

Since a given action can be written on multiple papers, the hat is a device

for generating probability distributions over actions.

Step 1. Once each period (say once a minute) he reaches into the hat,

draws a slip, and takes the action prescribed. He then returns the slip to the

hat.

Step 2. At random times this routine is interrupted by telephone calls,

where the probability of receiving a call in any given period is λ ∈ (0, 1).

Calls occur independently among periods. During a call he absent-mindedly

chooses an action uniformly at random instead of reaching into the hat.

Step 3. Every time he takes an action he receives a payoff. At the end of

day t he checks on how he is doing. Specifically, he first tallies the average

payoff, α̂t, he received per action taken over the course of the day whenever

he was not on the phone. For each of his actions, 1 ≤ j ≤ m, he compares

α̂t with the average payoff, α̂j,t, he received when he chose j and was on

the phone. In effect, α̂t represents an endogenous aspiration level, and the

payoffs α̂j,t are estimates of the payoff that arise when he departs from his

current probabilistic strategy.

Step 4. If all of the differences α̂j,t − α̂t are small in the sense that

(∀j) α̂j,t − α̂t ≤ τ

for some small tolerance level τ > 0, he keeps the hat for the next day.

Otherwise he puts the hat on the shelf and takes down another hat, also

containing h papers that represent some distribution over actions. We assume



6

that every possible distribution of the m actions on h papers is represented

by exactly one hat, and that each hat is drawn with equal probability.

Although our protagonist is unaware of it, there is someone next door

using the same method, though not necessarily with the same parameters.

Furthermore, the payoffs in each period depend on their joint decisions. Thus

they are unwittingly engaged in a game. We claim that, given any ε > 0, if

the τ ’s and λ’s are small enough, and the hat sizes and number of periods in

the day are large enough, they will be playing an ε-equilibrium of the stage

game at least 1− ε of the time.

A procedure of this form will be called a regret testing rule. The reason

is that α̂i
j,t amounts to an estimate of the payoff on day t that player i

would have resulted from playing action j all day long, hence the difference

r̂i
j,t = α̂i

j,t − α̂i
t is the estimated regret from not having done so. (Recall that

the regrets cannot be evaluated directly because the opponent’s actions are

not observed.) The logic is that if some regret r̂i
j,t is larger than a given

tolerance level τ , the player becomes dissatisfied and chooses a new strategy,

i.e., a new hat from the shelf. Otherwise, out of inertia, he sticks with his

current strategy.

We hasten to say that this rule is intended to be a contribution to learn-

ing theory and should not to be interpreted literally as an empirical model of

behavior, any more than fictitious play should be. It is, however, similar in

structure to a well-known class of learning procedures called “aspiration mod-

els” (see, for example, Karandkikar, Mookherjee, Ray, and Vega-Redondo,

1998; Börgers and Sarin, 2000; Bendor, Mookherjee, and Ray, 2001). In this

type of model, a subject switches action with some probability if the realized

payoff from taking the action falls short of some payoff level that the subject

hopes to achieve. This aspiration level may be generated in a variety of ways,

but it is not uncommon to assume that it tracks the average realized payoff

from past plays. Our model is broadly similar in structure, but it differs

from the usual set-up in two key respects. First, dissatisfaction is triggered

when a particular test statistic—the payoff from randomly chosen actions—
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is noticeably better than the current aspiration level, which is the average

payoff during the day (not over all previous periods). Second, the player

switches probabilistically to a different probability distribution over actions

(a different hat), whereas in a standard aspiration model the player chooses

a new action with a probability that is determined by the current aspiration

level and the current payoff. These features, when properly combined, lead

to approximate Nash equilibrium play in general finite two-person games.

With some further refinements of the approach one can achieve almost

sure convergence and the results can be extended to the n-person case (Ger-

mano and Lugosi, 2004). Here we shall focus on the two-person case where

sharper results are obtainable and the underlying mechanics are more trans-

parent.

3 The main result

A regret testing rule for individual i is defined as in the preceding section and

involves four parameters: a tolerance toward payoff shortfalls, τi > 0; the size

of i’s hat, hi (a positive integer), a probability λi > 0 that a telephone call

occurs in any given period of time (independently among periods), and the

number s of plays that occur per day. Note that s is the same for both

players. The number of i’s hats, Hi, is determined by our assumption that

there is one hat for each distribution on mi actions that is representable by

integer multiplies of 1/hi.

Let G be a finite two-person game with mi actions for player i, i = 1, 2.

A pair of mixed strategies (p, q) constitutes an ε-equilibrium of G if neither

player can increase his expected payoff by more than ε through a unilateral

change of strategy. To simplify the computation, we shall assume (without

loss of generality) that each player’s utility function has been normalized so

that the smallest payoff is zero and the largest payoff is one.

Theorem 1 Let G be a finite two-person game played by regret testers and

let ε > 0. The learning parameters can be chosen so that the players’ joint
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behaviors constitute an ε-equilibrium of game G with probability at least 1− ε

at all sufficiently large times.

Corollary 1 In Theorem 1 the limiting fraction of times that the players’

joint behaviors constitute an ε-equilibrium is at least 1− ε.

Later we shall give explicit bounds on the parameters under which the

theorem holds (see section 3.3 below). First we make several general remarks

and then provide an intuitive sketch of the proof.

Remark 1

Notice that we do not claim that the learning process converges to an ε-

equilibrium of G; rather, the behaviors are very close to equilibrium a very

large fraction of the time. Thinking of the limit as an empirical frequency, the

theorem shows that the proportion of times t′ ≤ t such that the process is in

an ε-equilibrium at t′ has greatest lower bound 1−ε as t goes to infinity. This

is akin to convergence in probability rather than deterministic convergence.

Nevertheless it is a strong claim: it says that if we were to take a “snapshot”

of the players’ behaviors at a random point in time, they would be very close

to Nash equilibrium behavior with very high probability. In the concluding

section we shall show that by annealing the learning parameters at a suitable

rate, we can achieve convergence in probability to the set of Nash equilibria.

With some further refinements of the approach one can actually achieve

almost sure convergence, as shown by Germano and Lugosi (2004).

Remark 2

There is a structural resemblance between regret-testing and hypothesis-

testing that merits some further discussion. One key similarity is that players

exhibit considerable inertia. Another is that changes in behavior are random

variables that allow the whole space of behaviors to be searched eventually.

The major difference between the two approaches is that they operate with
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different information. Under hypothesis testing, players observe the pattern

of past play in order to test their hypotheses, and they optimize (subject to

some smoothing) based on their hypotheses. Under regret testing there are

no hypotheses and no optimization; in fact, players need not even know that

an opponent exists. In short, under regret testing a player has less informa-

tion than under hypothesis testing; nevertheless it is enough so that even a

naive use of it can lead to equilibrium behavior.

Remark 3

It is not necessary to assume that the players revise their strategies si-

multaneously, that is, at the end of each day. For example, we could assume

instead that if player i’s measured regrets exceed his tolerance at the end of

the day, he revises his strategy with probability θi ∈ (0, 1), and with proba-

bility 1− θi continues to play his current strategy on the following day. This

does not change the conclusion of theorem 1 or the structure of the argument

in any significant way. Similarly, one can assume different s-values for the

two players (within certain limits), but this would significantly complicate

the proof without delivering much generality. Finally, one can refine the

search phase of the process in a variety of ways that may significantly reduce

the convergence time; we make no claim that the method proposed here is

efficient.

3.1 Proof sketch

Before giving the proof of theorem 1 in detail, we shall sketch the intuitive

idea of the argument. Consider the subset of times t that represent the begin-

ning of a new day. At each such time we may think of the current state as the

composition of the two hats; that is, a pair of probability distributions (p, q)

for the two players. Since the hats have finite capacities h1 and h2, there is a

finite set Z of states, namely, all those pairs z = (p, q) such that (ph1, qh2) is

integer-valued in every component. This defines time-independent, transition

probabilities P (z → z′) that lead from any given state z to any other state
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at the start of following day. Thus we obtain a stationary Markov process P

on the finite state space Z.

A given state (p, q) is a Nash equilibrium of G if and only if the expected

regrets are non-positive. A state is an ε-equilibrium if and only if the expected

regrets are ε or smaller. Of course, some of the realized regrets may be

much larger due to sample variability, but these realizations are unlikely.

The same holds for the differences r̂i
j,t, which are statistical estimates of

the regrets. (We remark that these estimates, while good, may be slightly

biased.) By contrast, if a given state is not an ε-Nash equilibrium, the regrets,

and hence the differences r̂i
j,t, will be large. Hence, if the τi’s are substantially

smaller than ε, at least one of the players will be dissatisfied with fairly high

probability. The dissatisfied player will then revise his strategy, and the

revision can be any discrete probability distribution over the actions that is

consistent with his hat size.

We would therefore like to argue that: (i) when the state is an ε-

equilibrium it remains in place for a long time, and (ii) when the state is

not an ε-equilibrium the process moves to an ε-equilibrium within a short

period of time. To establish these points requires a fairly detailed argument.

To illustrate some of the issues that arise, suppose we could show that

the process moves with positive probability from any given non-ε-equilibrium

state a to some ε-equilibrium state e in one period. Suppose further that once

in an ε-equilibrium state the process leaves with very small probability. Then

the following lemma would establish our theorem.

Lemma 1 Consider any stationary finite-state Markov chain with transition

matrix P . Let π be any stationary distribution of P . Then, for any two states

a and e:

πa ≤
1− P (e → e)

P (a → e)
(1)

The bound holds trivially if P (a → e) = 0.
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Proof: By standard properties of finite-state Markov chains, we know that

the stationary distribution satisfies:

πe =
∑
x

πxP (x → e)

≥ πaP (a → e) + πeP (e → e).

Hence,
πaP (a → e)

1− P (e → e)
≤ πe ≤ 1,

which implies (1).

Let E be the set of all ε-equilibrium states. Suppose, as above,

that maxe∈E P (e → e) can be made as small as we like, and that

maxe∈E mina 6∈E P (a → e) can be bounded away from zero. It would then

follow from Lemma 1 that
∑

a 6∈E πa can be made smaller than ε, from which

it follows that
∑

e∈E πe is larger than 1− ε.

The difficulty is that neither of these premises may hold (though the

lemma will still prove to be useful later on). First, one player may have

regret while the other does not. As they revise their strategies, a cyclic

pattern may emerge in which one revises while the second stays fixed, then the

second revises while the first stays fixed, and so forth ad infinitum. Hence the

process does not necessarily transit to an ε-equilibrium in one step. Assuming

this hurdle can be surmounted, there is a second difficulty: there may exist

ε-equilibria where the process does not stay for a long time. For example, if

the state is just barely an ε-equilibrium, the process may move away again

fairly quickly. In fact, even if the process lands on an equilibrium exactly,

there is a problem if it is a mixed equilibrium. Namely, there is a possibility

of “bad draws” in which the implementation of the strategy leads to realized

differences r̂i
j,t that are bigger than the required tolerance (due to sample

variability). Hence there could be a non-negligible probability that, once

near equilibrium, the players will move away again.

The essence of the proof is to show that, beginning in any non-equilibrium

state, there exists some path leading to a very sticky ε-equilibrium state
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such that the probability of following this path is much higher than the

probability of leaving the target state once it is reached. The subtlety of

the proof hinges on the fact that this path may be indirect, that is, the

process may first move further away from equilibrium before moving towards

it. In particular, we shall show that, if neither player has a weakly dominant

strategy, then the process can transit from a non-ε-equilibrium state to a

very sticky ε-equilibrium state in either one or two steps, possibly via an

intermediate non-equilibrium state. (The weakly dominant case must be

treated separately and is surprisingly non-trivial.) Once we establish this

point, the following variant of lemma 1 will deliver the desired conclusion.

Lemma 2 Consider any stationary finite-state Markov chain with transition

matrix P . Let π be any stationary distribution of P . Then, for any three

states a, b and e:

πa ≤
1− P (e → e)2

P (a → b → e)
(2)

The bound holds trivially if P (a → b → e) = 0.

Proof: Let P 2(x → y) denote the probability of transiting from x to y in

exactly two time periods. It is clear that P 2 is a finite-state Markov chain;

moreover, any stationary distribution π of P is also a stationary distribution

of P 2. Hence we can apply Lemma 1 to deduce that

πa ≤
1− P 2(e → e)

P 2(a → e)
.

Now (2) follows from the fact that P (e → e)2 ≤ P 2(e → e) and P (a → b →
e) ≤ P 2(a → e).

3.2 Expected versus estimated regret

Next we turn our attention to the problem of estimating the escape proba-

bilities from different kinds of states. This is complicated by the fact that

the players cannot observe the current state; the only information they have
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is their realized payoffs. Thus we need to distinguish between the current

state—the pair of probability distributions generating the payoffs—and the

realized payoffs that determine the players’ estimated regrets.

Given a game G on m1 × m2 action space A, let ui
j,k be the payoff to

i when the pair of actions (j, k) is played, 1 ≤ j ≤ m1, 1 ≤ k ≤ m2. To

simplify later computations we shall assume, without loss of generality, that

the von Neumann-Morgenstern payoffs have been chosen so that for all i, j, k,

we have 0 ≤ ui
j,k ≤ 1. Define the regret function for player 1 by

R1(p, q) ≡ max
h

∑
j,k

(u1
h,k − u1

j,k)pjqk, (3)

and for player 2 by

R2(p, q) ≡ max
h

∑
j,k

(u2
j,h − u2

j,k)pjqk. (4)

The players’ measured regrets are random variables that approximate

Ri(pt, qt) in a sense that we now make precise. Recalling the definitions

of α̂i
j,t and α̂i

t from Step 3 of regret testing, let

αi
j,t ≡ E(α̂i

j,t|(pt, qt)) (5)

and

αi
t ≡ E(α̂i

t|(pt, qt)) (6)

For player 1 we have

α1
j,t =

∑
k

((1− λ2)(qt)k + λ2/m2)u
1
j,k,

and

α1
t =

∑
j,k

(pt)j((1− λ2)(qt)k + λ2/m2)u
1
j,k.

Similar expressions hold for α2
j,t and α2

t . Define

ri
t ≡ max

j
αi

j,t − αi
t. (7)



14

Then r1
t = R(pt, (1 − λ2)qt + λ2

~1/m2), and r2
t = R((1 − λ1)pt + λ1

~1/m1, qt)

where ~1 is a vector of 1’s.

Since E(α̂i
j,t|(pt, qt)) = αi

j,t and E(α̂i
t|(pt, qt)) = αi

t we can think of the

difference:

r̂i
t = max

j
α̂i

j,t − α̂i
t

as being an estimator of ri
t. (Note, however, that it is not unbiased.)

Define the estimation error in state (pt, qt) to be

|r̂i
t − ri

t|. (8)

Recalling that the payoffs were normalized to lie between zero and one, it

follows from (3) – (6) that

|ri
t −R(pt, qt)| ≤ 2λi. (9)

In particular, when the ri
t’s are small, so are the values of the regret function

R(·, ·).
Define p̃t = (1− λ1)pt + λ1

~1/m1 and q̃t = (1− λ2)qt + λ2
~1/m2. Then the

actual play probabilities at time t are (p̃t, q̃t). Further,

|ri
t −R((p̃t, q̃t)| ≤ 2(λ1 ∨ λ2) < 2(λ1 + λ2). (10)

This shows that actual play will be an ε-equilibrium whenever r1
t , r

2
t ≤ ε −

2(λ1 + λ2).

Next we estimate the distribution of the realized regret estimates r̂i
t.

Lemma 3 If λi ≤ 1/4, then for all δ ≤ 1
3mi

,

P
(
|r̂i

t − ri
t| > δ

)
≤ 6mie

−sλiδ2

16mi .

Proof: Fix a player i and let m = mi, λ = λi. Let (pt, qt) be the state

at date t. Let Nj be the number of times action j is played on day t while

player i is on the telephone. The average payoff during these times, α̂i
j, is
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an average of Nj items, each of which is bounded between zero and one. By

Azuma’s inequality (1967),

P (|α̂i
j,t − αi

j,t| > δ | (pt, qt), Nj) ≤ 2e−Njδ2/2. (11)

Letting N =
∑

j Nj, s−N is the number of times i was not on the phone,

hence

P (|α̂i
t − αi

t| > δ | (pt, qt), N) ≤ 2e−(s−N)δ2/2. (12)

Using Bonferroni’s inequality (1936), it follows that

P (|r̂i
t − ri

t| ≥ 2δ | (pt, qt), N1, N2, . . . , Nm) ≤ 2
m∑

i=1

e−Njδ2/2 + 2e−(s−N)δ2/2.

(13)

Define the events

A ≡ |r̂i
t − ri

t| > 2δ

and

B ≡ ∩j{|Nj − λs/m| ≤ λs/2m}.

From our assumption that λ ≤ 1/4 we know that if B occurs then s−N ≥ sλ,

hence

P (A|B) ≤ 2me−sλδ2/4m + 2e−sλδ2/2 = 2(m + 1)e−sλδ2/4m. (14)

Since in general P (A) ≤ P (A|B) + P (Bc), we only need to bound P (Bc)

to complete the argument.

We know that Nj is binomially distributed B(λ/m, s). It follows from

Bennett’s inequality (1962)4

P

(
|Nj −

sλ

m
| ≥ sλ

2m

)
≤ 2e−sλ/20m. (15)

4Bennett’s bound (1962) is usually stated for a bounded collection of n independent
random variables U1, . . . , Un with sup |Ui| < M , E Ui = 0, and

∑
i E U2

i = 1. Then for
every τ > 0,

P (
∑

i

Ui ≥ τ) ≤ exp
(

τ

M
−
(

τ

M
+

1
M2

)
log(1 + Mτ)

)
.

We will consider the special case of n IID random variables X1, . . . , Xn, that are bounded
in absolute value by 1, with Var(Xi) = σ2. Letting τ = (γ/σ)

√
n and M = 1/σ

√
n,
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Hence P (Bc) ≤ 2me−sλ/20m by Bonferroni (1936). Thus we have

P (|r̂i
t − ri

t)| > 2δ) ≤ 2me−
sλ

20m + 2(m + 1)e−
sλδ2

4m . (16)

Changing from δ to δ/2 we obtain

P (|r̂i
t − ri

t)| > δ) ≤ 2me−
sλ

20m + 2(m + 1)e
−sλδ2

16m . (17)

By assumption, δ2 ≤ 1/9m2
i ≤ 1/9. Hence δ2/16 ≤ 1/20 and e−sλ/20m ≤

e−sλδ2/16m, so (17) implies

P (|r̂i
t − ri

t)| > δ) ≤ (4m + 2)e
−sλδ2

16m ≤ 6me
−sλδ2

16m . (18)

3.3 Bounding the learning parameters

In this section we shall provide specific bounds on the parameters τi, λi, hi,

s such that theorem 1 holds for a given G and ε > 0.

Let ∆i be the simplex of all probability distributions on mi actions, and

let ∆i(hi) be the finite subset of those distributions that can be represented

by integer multiples of 1/hi. Then ∆i(hi) approximates ∆i in the sense that

∀p ∈ ∆i,∃p′ ∈ ∆i(hi), ||p′ − p|| ≤
√

mi/hi. (19)

Bennett’s bound can be rewritten as:

P (X − EX ≥ γ) ≤ exp
(
nγ − n(γ + σ2) log(1 + γ/σ2)

)
.

If we take γ = σ2/2 and use the fact that log 3/2 ≥ .4,

P (X − EX ≥ σ2/2) ≤ exp(−nσ2/10).

When the Xi’s are binomial (p, n) with 0 < p < .5, this implies

P (|X − p| ≥ p/2) ≤ 2e−np/20.
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In the following we shall make frequent use of the concept of δ-best reply,

by which we mean a strategy that cannot be improved upon (in expectation)

by more than δ ≥ 0, given the strategy of one’s opponent. A strategy is δ-

dominant for player if it is a δ-best reply against any strategy of the opponent.

Define d(G) to be the smallest δ ≥ 0 such that at least one of the players has

a δ-dominant strategy. In particular, d(G) = 0 if and only if someone has a

weakly dominant strategy.

Let (δ1, δ2) be a pair of nonnegative real numbers. We shall say that a

state z = (p, q) is a (δ1, δ2)-equilibrium if player i cannot improve his expected

payoff by more than δi given the strategy of his opponent (i = 1, 2). (Using

our notation from section 3.2, a state z = (p, q) is a (δ1, δ2)-equilibrium if

Ri(p, q) ≤ δi for i = (1, 2).) When δ1 = δ2 = δ the terms δ-equilibrium and

(δ1, δ2)-equilibrium will be used interchangeably.

Lemma 4 Suppose that τi ≤ 1 and λi ≤ τi/8 for both players. Let zt =

(pt, qt) be the state at time t.

1. If state zt = (pt, qt) is a (τ1/2, τ2/2)-equilibrium, a revision occurs at

the end of period t with probability at most ae−bs for all s, where a =

12 maxi mi and b = mini{ λiτ
2
i

256mi
}.

2. If zt is not a (2τ1, 2τ2)-equilibrium, a revision occurs at the end of period

t with probability at least .5 provided that s ≥ 800 maxi{ m2
i

λiτ2
i
}.

Proof: In a (τ1/2, τ2/2)-equilibrium, ri
t ≤ τi/2 + 2λi ≤ 3τi/4. Hence, in

order for a rejection to occur, we must have |r̂i
t − ri

t| > τi/4. By lemma 3 we

know that for player i the probability of this occurring is less than 6mie
−sλiτ2

i
256mi .

Thus the probability that one or both players reject is less than

2∑
i=1

6mie
−sλiτ2

i
256mi ,

which implies part one.
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If we are not in a (2τ1, 2τ2)-equilibrium, ri
t ≥ 2τi−2λi ≥ 7τi/4 for at least

one of the players. Call this player i′. For that player, a rejection will occur

unless r̂i′
t ≤ τi′ , which implies |r̂i′

t − ri′
t | > 3τi′/4. By lemma 3 we know that

the probability of this is less than 6mi′e
−sλi′τ

2
i′

64mi′ . We wish to compute a value

of s such that

6mi′e
−sλi′τ

2
i′

64mi′ < .5.

This holds if

s >
64mi′

λi′τ 2
i′

loge(12mi′).

Noting that log x ≤ x for x ≥ 1, this simplifies to

s >
768m2

i′

λi′τ 2
i′

,

which implies part two.

A useful consequence of lemma 4 is the following

Lemma 5 Suppose λi ≤ τi/8 ≤ 1/8 and s ≥ 2000 maxi{((m1 +

m2)
2)/(ελiτ

2
i )}, for i = 1, 2. Then

1. If the state zt = (pt, qt) is a (τ1/2, τ2/2)-equilibrium, a revision occurs

at the end of period t with probability at most ε.

2. If the state zt = (pt, qt) is not a (2τ1, 2τ2)-equilibrium, a revision occurs

at the end of period t with probability at least .5.

Proof: The first part follows if ae−bs ≤ ε which holds if s ≥ log{a/ε}/b.
Using the inequality log(x) ≤ x, we see that it is sufficient for s ≥
a/bε = 12 maxi mi/ mini{λiτ

2
i /(128εmi)}. Hence it is sufficient that s ≥

2000 maxi{((m1 + m2)
2)/(ελiτ

2
i )}.

The second part follows because the restriction given for s is tighter than

in part two of the previous lemma.

Fix an m1 × m2 action space A. Let G be a game on A and let ε > 0.

Choose τi, λi, hi and s such that
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τi ≤ ε2/48 (20)

λi ≤ τi/16 (21)

hi ≥ 8
√

mi/(τ1 ∧ τ2) (22)

s ≥ 8000(H1 + H2)
3(m1 + m2)

2 max
i
{ 1

ελiτ 2
i

} (23)

(Recall that Hi is the number of i’s hats and is determined by hi.) In particu-

lar, these assumptions imply that i’s grid error is at most τi/8 (see inequality

(19) and (22)).

Theorem 1 (restatement) Let G be a two-person game on A played by

regret testers, and let ε > 0. Whenever the parameters satisfy (20)–(23) and

d(G) 6∈ (0,
√

48(τ1 ∨ τ2), the players’ joint behaviors at time t constitute an

ε-equilibrium of G with probability at least 1− ε as t →∞.

This result implies theorem 1, because given G and ε > 0, we can always

choose τi small enough so that the conditions of Theorem 1 are satisfied.

(Either d(G) = 0, in which case (20)–(23) suffice, or d(G) > 0, in which

case we can choose τ small enough that (21)–(23) hold and also d(G) ≥√
48(τ1 ∨ τ2).) We have stated theorem 1 in this way in order to call attention

to the point that once the parameters are chosen to satisfy (20)–(23) for a

given ε > 0, the conclusion holds for all games G on A except possibly for

games in which no one has a weakly dominant strategy but someone almost

does, that is, d(G) ∈ (0,
√

48(τ1 ∨ τ2)) for some i. (Under various natural

assumptions about the distribution of payoffs in G, this excluded set will be

small when the τi are small and hence when ε is small.) The trouble with

such a game is that the payoff differences may not be large enough (relative

to the tolerances) for the players to stick with an ε-equilibrium for very long

once they find it. If however d(G) = 0, then someone has a weakly dominant

strategy that he can lock into for long periods, which allows the other player

time to adjust to ε-equilibrium behavior too. In the following section we shall
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show that we can circumvent this difficulty by annealing the parameters at a

suitable rate. In this case we obtain a variant of regret testing that guarantees

convergence in probability to the set of Nash equilibria for all games G on a

given action space A.

Proof of theorem 1. Let E be the set of states z = (p, q) on the grid

such that the players’ behavior in state z constitutes an ε-equilibrium of

G. Recall that 1’s actual behavior is given by the probability distribution

p̃ ≡ (1 − λ1)p + λ11/m1, and player 2’ s actual behavior is given by q̃ ≡
(1−λ2)q+λ21/m2. Thus it could happen that the strategies (p, q) constitute

an ε-equilibrium of G but the behaviors do not. From equation (10) we see

that when the λi are small, however, the actual behaviors in state z are very

close to (p, q); indeed we can say the following:

If λ1, λ2 ≤ ε/4 and z = (p, q) is an ε/2-equilibrium of G, then the

actual behaviors in state z constitute an ε-equilibrium of G.

Define E∗ to be the set of all states z that are ε/2-equilibria of G. To

prove Theorem 1, it suffices by (10) to show that the long-run probability of

E∗ is at least 1− ε. In other words, it suffices to show that for any stationary

distribution π of the process,

∑
a 6∈E∗

πa ≤ ε.

We need to consider two separate cases.

Case 1. d(G) > 0: neither player has a weakly dominant strategy.

In this case we have the additional hypothesis that d(G) ≥
√

48(τ1 ∨ τ2).

Choose a Nash equilibrium e ∈ ∆1×∆2. Since the grid errors are at most τi/8

and the payoffs are bounded between 0 and 1, there exists a state e∗ = (p∗, q∗)

on the grid that is a (τ1/8, τ2/8)-equilibrium. We shall fix this state for the

remainder of the proof of Case 1.
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Letting ε′ = ε/4(H1 + H2)
3 and applying Lemma 5 (with ε′ instead of ε)

we obtain

P (e∗ → e∗) ≥ 1− ε′ ≥ 1− ε/4(H1 + H2)
3 for all s. (24)

The next step is to show that for all a 6∈ E∗, the process moves from a to

e∗ (in one or two periods) with a sufficiently high probability.

Case 1a. a 6∈ E∗ and each player can increase his payoff by more than ε/2.

Suppose that zt = a = (p, q). Since each player i can increase his payoff

by more than ε/2, he can certainly increase it by more than 2τi. (Recall

our assumption that τi ≤ ε2/48.) It follows from Lemma 5, part two, that

the probability is at least 1/4 that both players revise at the end of day t.

Conditional on both rejecting, the probability is at least 1/H1H2 that player

1 chooses p∗ and player 2 chooses q∗ in period t + 1. Hence

P (a → e∗) ≥ 1

4H1H2

.

Case 1b. a 6∈ E∗ and only one of the players can improve his payoff by

more than ε/2.

This case requires a two-step argument: we shall show that the process

can transit from state a to some intermediate state b with the property that

in state b each player i can increase his payoff by more than 2τi. As in the

proof of Case 1a, we then conclude that P (b → e∗) ≥ 1
4H1H2

.

Assume without loss of generality that in state a = (p, q), player 1 can

increase his payoff by more than ε/2, that is, there exists p′ ∈ ∆1 such that

u1(p′, q)− u1(p, q) ≥ ε/2. (25)

Let δ = d(G): then neither player has a δ′-dominant strategy for any

δ′ < δ. In particular, q is not δ/2-dominant for player 2. Hence there exists

p∗ ∈ ∆1 and q′ ∈ ∆2 such that

u2(p∗, q′)− u2(p∗, q) > δ/2.
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Consider the strategy

p′′ = (δ/4)p + (1− δ/4)p∗. (26)

Since p′ is a best response to q, we know that u1(p′, q) − u1(p∗, q) ≥ 0. It

follows from (25) and (26) that

u1(p′, q)− u1(p′′, q) = (δ/4)[u1(p′, q′)− u1(p, q)]

+(1− δ/4)[u1(p′, q′)− u1(p∗, q)]

≥ (δ/4)[u1(p′, q′)− u1(p, q)]

> δε/8. (27)

By assumption, δ ≥
√

48(τ1 ∨ τ2) and ε ≥
√

48(τ1 ∨ τ2), hence δε/8 > 6τ1.

From this and (27) it follows that at (p′′, q) player 1 can increase his payoff

by more than 6τ1.

Similar calculations show that at (p′′, q) player 2 can increase his pay-

off by at least δ/2 − δ/4 = δ/4, which by assumption is greater than√
48(τ1 ∨ τ2)/4 ≥ 3τ2.

Although q is on player 2’s grid, the definition of p′′ in (26) does not

guarantee that it is on player 1’s grid. We know from (22), however, that

there exists a grid point (p′′′, q) such that |p′′′ − p′′| ≤ √
m1/h1 ≤ τ1 ∧ τ2.

Since the payoffs lie between zero and one, it follows from the preceding that

b = (p′′′, q) is on the grid and is not a (5τ1, 2τ2)-equilibrium.

As in the proof of Case 1a, it follows that P (b → e∗) ≥ 1/4H1H2. Further,

the process moves from state a to state b with probability at least 1
H1∨H2

,

because only one player needs to revise to p′′′. Thus

P (a → b → e∗) ≥ 1

4(H1 + H2)3
.

By (24) we know that

1− P (e∗ → e∗) ≤ ε

4(H1 + H2)3
.

Applying Lemma 2, we conclude that the probability of being in E∗, and

hence in an ε-equilibrium state, is at least 1− ε.
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Case 2: dG = 0: Weakly dominant strategies exist.

We can assume without loss of generality that player 1 has a weakly

dominant strategy, in which case player 1 has a pure strategy that is weakly

dominant.

The idea of the proof is to show that player 1 does not change strategy for

very long stretches of time, and that during any such stretch player 2 does

not change strategy very often either. Thus both players change strategies

infrequently. Assuming that τi < ε/2, this implies that they must be in an

ε-equilibrium a large fraction of the time (because in any period where they

are not in an ε-equilibrium, one or both will reject and switch strategies with

high probability, by Lemma 5.) An interesting feature of the argument is

that it does not imply that player 1 is using his weakly dominant strategy

for long stretches of time. (For example, he might be playing his part of a

strict pure strategy equilibrium that does not involve his weakly dominant

strategy.) It is the presence of a weakly dominant strategy that allows us to

say that strategy changes are infrequent. We then use the ergodicity of the

process to deduce that it is in an ε-equilibrium with high probability.

Define

T ≡ 2(H1 + 1)(H2 + 1)/ε. (28)

Assume for the sake of concreteness that action 1 is weakly dominant for

player 1. There is some hat that consists entirely of papers labelled with this

action. Any time player 1 picks a new hat off the shelf, the probability is

1/H1 that he grabs this hat. Once he starts using it, lemma 3 (and weak

dominance) imply he will continue to use it for esλ1τ2
1 /16m1 days in expectation.

By assumption, equation (23) shows that

sλ1τ
2
1 /16m1 ≥ 8000(H1 + H2)

3m1/16ε ≥ T.

Hence player 1 will continue playing his weakly dominant strategy for at least

T days in expectation.

Now let us estimate the frequency with which player 2 revises. Suppose

that L days elapse between two successive revisions by player 1. If player 2
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revises during this interval, there is a 1/H2 chance that she will pick a hat

representing a pure strategy best reply to player 1’s fixed behavior. Once

this happens, the expected waiting time (in days) until she revises again is

at least exp(sλ2τ
2
2 /16m2), which by construction is greater than T . If L > T

(i.e., L is long), the expected number of revisions by player 2 during this

interval is at most H2L/T . If L ≤ T (i.e., L is short), the expected number

of revisions by player 2 is at most H2. Given any time t > T , it follows that

the expected number of revisions by player 2 over all short intervals up to

t is at most H1H2t/T , and the expected number of revisions over all long

intervals is at most H2t/T . Thus the expected number of times up to t when

player 1 or player 2 revises is at most H1H2t/T + H2t/T + H1t/T which is

less than (H1 + 1)(H2 + 1)t/T .

If at some time t the players are not in an ε-equilibrium, then at least

one of them (say i) has an expected regret that exceeds 2τi. Thus, by lemma

5, the probability is at least one-half that a revision occurs at t. It follows

that the expected number of times through t > T that the process is not in

an ε-equilibrium is at most twice the expected number of revisions, that is,

at most 2(H1 + 1)(H2 + 1)t/T , which is at most εt. By the ergodic theorem

for acyclic finite Markov chains, the long run frequency of being in an ε-

equilibrium is also the limiting probability of being in an ε-equilibrium at

any given time t as t goes to infinity, which by the preceding is at least 1− ε.

4 Convergence in probability

Theorem 1 shows that regret-testing induces ε-equilibrium behavior with

probability at least 1 − ε provided that d(G) is not in the excluded range

(0, ε). If we think of G as a vector of payoffs in <2m1m2 (one payoff for each

player under each pair of actions), the excluded set will be small relative to

Lebesgue measure when ε is small. By letting ε approach zero at a suitable

rate, and tightening the parameters in accordance with the bounds (20)-(23),
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the process will eventually capture all games G in the “net,” that is there

will be no excluded cases. Moreover the process will converge in probability

to the set of Nash equilibria, not just the ε-equilibria.

Fix finite action spaces A1 and A2 for players 1 and 2 respectively, where

|A1| = m1 and |A2| = m2. Next, let (τ1(ε), τ2(ε), λ1(ε), λ2(ε), h1(ε), h2(ε),

s(ε)) be a system of parameters satisfying the bounds (20)—(23) for every

ε > 0.5 Let PG(ε) denote the finite-state Markov process determined by G

and the parameters (τ1(ε), . . . , s(ε)). Let EG(ε) be the finite subset of states

consisting of ε-equilibria of G.

Definition 1 Let P be an acyclic, finite Markov process and A a subset of

states. For each ε > 0, let T (P,A, ε) be the first time (if any) such that, for

all t > T (P,A, ε) and all initial states the probabiltiy is at least 1− ε that the

process is in A at time t.

Since PG(ε) is acyclic, it follows from theorem 1 that T (PG(ε), E(G), ε) is

finite. In particular, for all t ≥ T (PG(ε), EG(ε), ε), the probability is at least

1− ε that the process is in an ε-equilibrium of G at time t.

The time T (PG(ε), EG(ε), ε) may depend on the payoffs, because these

affect the details of the transition probabilities and the states that are ε-

equilibria of G. We claim, however, that for every ε > 0 there is a time T (ε)

such that T (ε) ≥ T (PG(ε), EG(ε), ε) for all G such that δG 6∈ (0, ε).

To see why this is so, consider the realization of plays on any given day. A

realization is a sequence of s(ε) actions for each player and a sequence of s(ε)

5For example, we could choose

τi(ε) = ε2/50,

λi(ε) =
ε2

800
,

hi(ε) =
⌈

400
√

m1 + m2

ε2

⌉
,

s(ε) =
⌈
(30/ε)7(H1 + H2)3(m1 + m2)2

⌉
where dxe refers to the least integer greater than or equal to x.
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binary outcomes (say 0 or 1) that indicate whether a given action was taken

while on the phone or not. Hence there are (4m1m2)
s(ε) possible realizations.

We may partition them into four disjoint classes: sequences that are rejected

by both players, sequences that are rejected by player 1 but not player 2,

sequences that are rejected by player 2 but not player 1, and sequences that

are accepted by both. (Notice that this partition does not depend on the

day t or on the strategies (pt, qt) in force during that day, but it does depend

on the game G.) However, a player’s response given a rejection does not

depend on the sequence at all: it leads the player to choose a new strategy

with uniform probability over all distributions consistent with his hat size.

The number of length-s(ε) realizations is finite, and there is a finite num-

ber of ways of partitioning them into four classes. Further, the probability

that each sequence will be realized on a given day t is determined by the

state (pt, qt), and there are only a finite number of possible states. Hence,

over all G, there can be only a finite number of Markov transition matrices

PG(ε). Further, there are only a finite number of different subsets of states

that can be used to define EG(ε). Let us enumerate all of these possible pairs

as follows (P1, E1), . . . , (Pk, Ek). Now define T (ε) = max1≤j≤k T (Pj, Ej, ε).

Then T (ε) has the property that for all G such that d(G) 6∈ (0, ε), and for

all t ≥ T (ε), the process is at an ε-equilibrium at time t with probability at

least 1− ε.

Definition 2 (annealed regret testing) Consider a positive sequence

ε1 > ε2 > ε3 > . . . decreasing to zero. The annealed regret testing proce-

dure at stage k is the regret testing procedure with parameters (τ1(εk), τ2(εk),

λ1(εk), λ2(εk), h1(εk), h2(εk), s(εk)). Each day that the process is in stage k,

the probability of moving to stage k + 1 on the following day is

pk ≡
ε2
k+1

2k2T (εk+1)
(29)

Theorem 1 Fix an m1 × m2 action space A. The annealed regret testing

process defined above has the property that for every game G on A the process

converges in probability to the set of Nash equilibria of G.
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Proof: We will show that, for all ε > 0, the probability that at time t the

process is in an ε-equilibrium converges to one as t goes to infinity. This

implies that the process converges in probability to the set of Nash equilibria

of G.

The definition of pk means that we can recursively define a sequence of

random variables Nt as follows:

N1 = 1

Nt+1 =

 Nt with probability 1 - pNt

Nt + 1 with probability pNt

where the procedure uses parameters (τ1(εNt), τ2(εNt), λ1(εNt), λ2(εNt),

h1(εNt), h2(εNt), s(εNt)) at time t.

Define Tk ≡ inft{t : Nt ≥ k}. In other words, Tk is the first time that the

system shifts to the kth set of parameters. Now define Wt ≡ t− TNt . Wt is

the length of time since the the parameters were last changed. For any game

G on A, if d(G) > 0 then d(G) ≥ εk for some k. The least such k is the

critical index for G, denoted by kG. In case d(G) = 0, we will take kG = 1.

Define k∗G = kG ∨mink{k | εk < ε/2}.
Consider two different cases at time t: Wt ≥ T (εNt) and Wt < T (εNt). In

the first case, by the Markov restart property and the definition of T (εNt)

the process is in an εNt-equilibrium with conditional probability greater than

1 − εNt where we have conditioned on Nt. If Nt ≥ k∗G then εNt ≤ ε/2.

When t is large enough, Nt is arbitrarily large, and hence the probability

that Nt > k∗G can be made close to 1.

It remains to consider the second case, namely, Wt < T (εNt). We shall

show that P (Wt < T (εNt)) converges to zero as t →∞, which will complete

the proof.

We will say that episode k is “short” if it lasts at most T (εk+1)/ε
2
k+1 peri-

ods. The probability of a short episode is less than 1/k2, which is summable.

Hence if we pick k∗∗G ≥ k∗G ∨ 4/ε, the chance of a short episode after stage k∗∗G
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is less than ε/2. Define the set

At ≡ {Nt−T (εNt )/ε2 ≥ Nt − 1}.

The event At occur if Nt − 1 is not a short episode. Pick t′′ large enough so

that the probability that Nt′′ ≥ k∗∗G + 1 is larger then 1− ε/4. Then for any

t > t′′ we have P (Ac
t) ≤ ε/2.

We want to show that, for all t > t′′,

P (Wt ≥ T (εNt)) ≥ 1− ε.

For all t > t′′,

P (Wt < T (εNt)) ≤ P (Wt < T (εNt)|At) + P (Ac
t)

≤ P (Wt < T (εNt)|At) + ε/4

Thus we only need to bound P (Wt < T (εNt)|Nt, At) by ε/2 and the proof

will be complete. We have

P (Wt < T (εNt)|At) =
∑
n

P (Wt < T (εNt)|Nt = n, At)P (Nt = n|At)

≤ max
n

P (Wt < T (εNt)|Nt = n,At)

Define A0
t = {Nt−T (εNt )/ε2 = Nt}, and A1

t = {Nt−T (εNt )/ε2 = Nt − 1}. Then

At = A0
t ∪ A1

t and

P (Wt < T (εNt)|Nt = n,At) = P (Wt < T (εNt)|Nt = n,A0
t )P (A0

t |At) +

P (Wt < T (εNt)|Nt = n,A1
t )P (A1

t |At).

It is clear that Wt = T (εNt)/ε
2 > T (εNt) when A0

t occurs. Hence,

P (Wt < T (εNt)|Nt = n,At) ≤ P (Wt < T (εNt)|Nt = n, A1
t )P (A1

t |At).

The probability that Wt = w is proportional to (pw
k pk+1)

T (εNt )/ε2−w which

is decreasing in t. Hence for all sufficiently large t, P (Wt < T (εNt)|Nt =

n, A1
t )P (A1

t |At) is less than ε/2.
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