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Abstract

The most powerful assumption in data analysis is that of independence. Unfortu-

nately, it is almost impossible to check, so it often must stay as an assumption. One

way out of this trap is to assume less independence than usual: Instead of assuming

all n observations are i.i.d. (independently and identically distributed), it is often more

credible to assume that several blocks of the data are independent of each other. This

gain in credibility, however, might come with a loss of statistical power compared to

an analysis that correctly assumed (if it did) the full i.i.d. assumption. The main goal

of this paper is to address this trade-off. We show that in the true i.i.d. case, little

power is lost if the weaker block independence is assumed, as long as there are at least

a handful of independent blocks; on the other hand, if block-dependent data is treated

independently, the risk of making type I errors can be severe. Hence, we advocate using

the weaker block independence assumption rather than the stronger full independence

assumption, if the former leads to a gain in credibility.
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1 Introduction

The motivation of this paper arose from a lunchtime discussion: Adi described a data set he

had seen analyzed in a legal case. A company had claimed their motor oil helped the gas

mileage of a car. They showed many measurements of gas mileage with and without the use

of this oil, using different cars, different drivers, under different driving conditions. All in all,

there were hundreds of observations. Under the classical i.i.d. assumption about the error

structure, the two-sample t-statistic for oil was significant. It seemed like a clear win for the

company justifying its claim.

However, with further discussion, Adi pointed out that there were only four different cars

used in the whole study. Furthermore, the car variable had a very significant effect. Thus,

an alternative analysis would be to treat each car as an independent observation and then

perform a one-sample t-test with only four mileage differences obtained for each car. This, like

most discussions here at Penn, lead to a long argument. Were there hundreds of observations,

or were there four observations? We will call these two models the full i.i.d. model and the

blocks/cars model hereafter. Clearly, the company would like to argue for the full i.i.d. model

for its benefit of higher power, whereas the prosecution wants to use the cars model for its

control of type I error.

This paper will show there is a middle ground. Such a middle ground would have to

analyze the data so that both sides of the legal battle will believe the result under their own

preferred model. For the company, it would have to have about as high power as their full

i.i.d. analysis. For the prosecution, it would have to control the type I error if the cars model

is correct. We will argue that such a middle ground already exists: a blockwise t-test. In

particular, we will show that the loss of power of using the blockwise t-test when the full i.i.d.

model is correct is small. Furthermore, it has the right size under the cars model. Thus, both

parties should accept this the answers generated by this test.

This kind of arguments is also common in group randomized trials (Cornfield, 1978) in

public health research. In such study designs, interventions are operated at a school, hospital,
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or community level. The number of groups is typically small in most studies (Murray et al.,

2004). Since treatment policies differ at each site, the “errors” for each site can be correlated.

Therefore, similar to the cars model, group randomized trials are characterized by two features:

small number of groups and positive intra-cluster correlations. Lack of attention to these issues

would lead to “underpowered” designs (not enough data collected) and “overstated” power

(Feng et al., 2001).

Longitudinal data also typically behaves this way (Diggle et al., 2002). In the COPSAC2000

(Copenhagen Studies on Asthma in Childhood) birth cohort study (Bisgaard, 2004), medical

researchers recruited 411 eligible children born to asthmatic mothers between 1998 and 2001 in

order to investigate complex effects in the origin of atopic diseases. The children were assessed

at the research unit regularly and have sequential records of follow-up diagnoses. The data is

thus composed by K = 411 groups of correlated observations. In reality, due to complicated

situations, for example, deficient cases as in studies of rare disease, or data validity issues such

as data missing and measurement errors, the effective number of independent groups can be

small in the observed longitudinal data.

In biostatistics there are already common techniques for analyzing these cars model like

data. Common modeling includes treating the within group correlation using random effects

(Laird and Ware, 1982). Alternatively, we can avoid having to model them if we treat the

entire group as an observational unit. Since we have independence between groups, this

blocking structure can then be used to generate an efficient estimator. Correct analysis of this

sort of data started with Liang and Zeger (1986). But typically the sandwich estimator in

Liang and Zeger (1986) requires a relatively large number of groups. Small sample corrections

are usually not easy to compute (Fay and Graubard, 2001; Mancl and DeRouen, 2001). We

will argue that using the simple blockwise t-test we advocate, even if there are only a small

number of groups, there is very little power loss compared to making the bold assumption

that each patient is independent from all others.

In the rest of the paper, we will show that little power is lost when we use blocks instead
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of a full i.i.d. model (Section 2). Alternatively, if the full i.i.d. model is wrong, it might make

a large type I error (Section 3). So we argue using a blocks model if it there is any doubt

about the full i.i.d. model. We then compare our simple approach with linear mixed effect

models using standard software in Section 4 and conclude with some discussions in Section 5.

2 Comparisons of Power

In this section, the data will always be generated using the full i.i.d. model. We primarily

analyze this data using an estimator that is designed for block independence. We then compare

the power of this test statistic to that of the classical one which in this case has correctly made

the full i.i.d. assumption.

Notationally we need blocks, but the true model, that we have is n i.i.d. observations from

a normal population with mean µ and variance σ2, ignores the blocks. To make it consistent,

instead of the usual notation:

Y1, . . . , Yn ∼i .i .d . N(µ, σ2)

which draws attention to the full i.i.d. structure, we change the names of the random variables

and use the following:

Y1,1 · · · Y1,n1 , . . . , Yi,1 · · · Yi,ni
, . . . , YK,1 · · · YK,nK

∼i .i .d . N(µ, σ2)

where
∑K

i=1 ni = n. Regardless of which notation is used, the maximum likelihood estimator

(MLE) for µ on this data is simply the grand mean Y , namely the sum of all the Yi,j’s divide

by total number of observations n.

The blocks model supposes that Yi,j’s with difference indices i are independent of each

other, but that if the i’s are the same there may be a correlation between the Yi,j’s; so Y1,1

and Y3,1 are independent, but Y1,1 and Y1,3 are correlated. The blocks model makes no claims

as to what this correlation is and only assumes:

Yi,j ∼ N(µ, σ2
ij), j = 1, . . . , ni, i = 1, . . . , K. (1)
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with cov(Yi,j, Yi,k) being allowed to be non-zero. In total, there are
∑K

i=1

(
ni

2

)
covariances that

it would allow to be non-zero. Hence, it is a much larger null model than the i.i.d. model

which assumes that all of these off diagonal covariances are exactly zero. Even a random

effects model will often assume the variance-covariance structure of each block to be the same

and model the structure by way of reducing these
∑K

i=1

(
ni

2

)
parameters to only a few ones.

Now we want to know whether or not H0 : µ = µ0 holds. In the full i.i.d. model where

Yi,j ∼i .i .d . N(µ, σ2), we may utilizes the classic one-sample t-test with statistic

Tiid =
Y − µ0

SEiid

. (2)

Here Y is the grand mean and SEiid is the classical standard error of Y , namely SEiid = s/
√
n,

where s is the sample standard deviation of all {Yi,j}. The test statistic Tiid has a student’s

t-distribution with n− 1 degrees of freedom under the normality assumption.

If one admits that there is dependence within a block, one might be tempted to model

this depedence. An alternative and simple approach is to consider looking at the Y i·’s, where

Y i· =
∑ni

j=1 Yi,j/ni is the average of the ith block. These averages, by our block independence

assumption, are indepedent and thus are more amenable classical analysis. For example, to

test whether their mean is µ0 or not, we may use the statistic

Tblock =
(
∑K

i=1 Y i·)/K − µ0

SEblock

, (3)

where the SEblock = sY i·
/
√
K, and sY i·

is the standard deviation of {Y i·}. This leads to a

t-distributed statistic with degrees of freedom K − 1 under the normality assumption.

One advantage of looking at {Y i·} is that we can analyze the properties using the so-called

self-normalized sums which make few distributional assumptions. If the distributions of Yi,j’s

are unknown, then the block model only informs us that the Y ’s are IID. Since we might have

as few as two block, using the central limit theorem here would raise eyebrows. But if we can

add just a bit more, powerful theorems from about self normalized sums (for example Bertail

et al. (2008)) come to the rescue. If the Y ’s can be modelled as being symetric, then we get

the following theorem:
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Theorem 1. (Self-normalized sums theorem, Bertail et al., 2008) Under the null hypothesis

H0 : µ = 0, if Y i·’s are symmetric, then for K > 1:

P


∣∣∣∑K

i=1 Y i·

∣∣∣√∑K
i=1 Y

2

i·

≥ t

 ≤ 2 exp

(
−t

2

2

)
,

He also has a statement under a 4th moment assumption instead of under symmetry.1

In this paper, we will take the low road and simply assume normality. The statistics Tblock

(3) thus has a t-distribution with degrees of freedom K − 1.

We will compare the power of these two test statistics and investigate the power loss

when the more credible blocks model is assumed. Define 1− βiid(µ) to be the power of using

Tiid ∼ tn−1 and 1−βblock(µ) to be the power of using Tblock ∼ tK−1. To see how much these two

power functions differ from each other, shown below are several plots on the power difference

βblock(µ) − βiid(µ). (4)

We compare this power loss with different test levels α, block sizes n0 and numbers of blocks

K. Without loss of generation, we assume σ = 1. On this scale, we will show values of the

power loss as a function in µ varying from 0 to 2 .

In the first two figures, we compare the power loss at test level α = 0.05. In Figure 1,

the number of observations per block, n0, equals 10. Clearly, if there is only one block, the

SEblock for the blocks model has no ability to estimate the variability. When there are only

two block, namely K = 2, there can be an power loss up to an 86%. Since the maximal loss is

95% this is not doing very well. However, the power loss decreases fast as K increases. When

K = 8, βblock(µ) − βiid(µ) < 0.1 for all µ. In fact, the supremum of power losses over all µ,

sup
µ
{ βblock(µ)− βiid(µ) }

1He continues (2) In general, if the kurtosis of Y i·’s, γ4 <∞, for any a > 1,

P


(∑K

i=1 Y i·

)2

∑K
i=1 Y

2

i·

≥ t

 ≤ 2 exp
(

1− t

2(1 + a)

)
+ exp

(
− K

2γ4

(
1− 1

a

)2
)
.
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Figure 1: Power loss at test level α = 0.05 with n0 = 10. Left : Power losses when the number of independent

blocks K = 2, 4, 6 and 8. When K ≥ 6, not much power is lost at most µ’s. Middle: The supremum of power

losses for each K, 2 ≤ K ≤ 15. This maximum power loss is less than 0.1 when K ≥ 8. Right : The average

power loss over µ ∈ [0, 2] is generally small except in the extreme case of K = 2.

decays exponentially as shown in the middle panel of Figure 1. On average, the power loss is

fairly small as long as we have more than three independent blocks.
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Figure 2: Power loss at test level α = 0.05 with n0 = 100. Left : For most µ the lost power does not exceed

0.1. Middle: The supremum power loss for each K, 2 ≤ K ≤ 15. Right : The average power loss over µ ∈ [0, 2]

is small in general.

Figure 2 tells a similar story when the block size n0 = 100. A more pronounced fact
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revealed by this graph is that although the supremum power loss supµ{βblock(µ)−βiid(µ)} will

not be less than 0.1 until K ≥ 8, most µ’s have βblock(µ)−βiid(µ) < 0.1 even when K is small.

This can be also seen from the right panel of Figure 2: except the most extreme case when

K = 2, the average power loss is ignorable.
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Figure 3: Power loss when α varies from 0.005 to 0.10. The block size n0 = 10. Left : Although up to

more than 50% power is lost at K = 2, the supremum power loss alleviates quickly as K gets larger. When

K = 10, the maximum power loss goes less than 0.1 at test levels α ≥ 0.03. Right : The average power loss

over µ ∈ [0, 2] is small and negligible except the extreme case with only two blocks.

To control the power loss, we will need more independent blocks when the test levels are

small. In Figure 3 we display the decay speed of the supremum power loss supµ{βblock(µ) −

βiid(µ)} at the test levels varying from 0.005 to 0.10. Note that these are the worst cases,

similar patterns hold as in Figure 1 and 2 that the power loss is very small at must µ, which

is also implied by the right panel, a plot of the mean power loss avgµ∈[0,2]{βblock(µ)− βiid(µ)}

at different test levels.

As expected, the supremum power loss decreases slowly when K is extremely small, say

2. Even at α = 0.1, supµ{βblock(µ) − βiid(µ)} > 0.5. But the decay trace shows a fast decay

pattern when K is slightly larger. When K = 10, at most 21% power is lost at level α = 0.005

but no more than 10% power is lost when α ≥ 0.03.
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In summary, not much power is lost in general except in the most extreme case K = 2;

at the common test level α = 0.05, very little power is lost at every µ when the number of

independent blocks K ≥ 8; on average, approximately with K ≥ 4 we will not lose detectable

power; for most test levels α, a medium K can guarantee the maximum power loss not

exceeding 0.1.

3 Type I Errors

The previous section showed that using the block model based test maintained about as much

power as the i.i.d. based test. The dual question then is, how well does the i.i.d. based

test perform in the presence of dependence? This section addresses this question from the

perspective of type I error. We will show that for some dependence structures the size of the

i.i.d. based test is not close to the target of α = .05.
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Figure 4: The true probability of type I error. Left : Block size n0 = 10. In general, these probabilities are

much larger than the designed levels of 0.10, 0.05 and 0.01. Right : Block size n0 = 100. More information on

dependence being lost, the probabilities of type I error jump up to a high level quickly. There is at least 30%

chance of making type I errors even with a small ρ > 0, if the wrong test procedure has been taken.

Assume that the blocks model (see equation (1)) holds and with fixed block sizes, so
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ni ≡ n0. Furthermore, assume

Corr(Yi,j, Yi,k) = ρ, 0 ≤ ρ ≤ 1, (5)

for any 1 ≤ j 6= k ≤ n0. As shown in Figure 4, the size of the test, namely the probability of

making type I error, is often much larger than the designed test levels. For high correlation,

the α(ρ) is worse–this makes sense since the higher the correlation the further we are from

independence. Likewise as the number of observations in a block increases the α gets worse.

This is because the more observations there are in a block the larger the divergence between

the i.i.d. model and blocks model. This substantially increases the chance of making type I

errors, as shown in the right panel of Figure 4, where the block size n0 = 100. Even with a

mild correlation ρ, the chance of making type I errors is large.

In a word, the price of ignoring the dependence is very expensive.

4 Comparison with Linear Random Effect Model

The i.i.d. model assumes that the
∑K

i=1

(
ni

2

)
correlations are exactly zero whereas the blocks

model completely unconstrains them. A compromize between these two extremes is to assume

a model which allows for some correlations, but not any possible correlation. For example, the

illustrative model in Section 3 we used has the same correlation structure as linear random

effect models (Laird and Ware, 1982). Specifically, model (1) can be also modeled via a

random effect model:

Yi,j = µ+ γi + εij (6)

where γi and εij have mean 0 and variance τ 2 and σ2, respectively. If εij’s are i.i.d. with

variance 1− ρ, and αi are i.i.d. with τ 2 = ρ, it reduces to the equal intra-cluster correlation

case specified in (5). It is thus of interest to compare testing using the simple t-test with

testing using standard implementations for random effect models.

The lme function in R package nlme is one of the popular functions that conveniently

implements linear mixed effect models. It has been widely used in medical research (Fitzmau-
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rice et al., 2008) and educational research (Lockwood et al., 2003). For testing fixed effects,

it has been noticed in the literature (See e.g., Pinheiro and Bates, 2002; Faraway, 2005) that

likelihood ratio tests based on maximum likelihood estimations tend to be anti-conservative

and has smaller p-values. Permutation tests are sometimes recommended. Pinheiro and Bates

(2002, Section 2.4) has thorough comparisons of the degrees of freedoms of test statistics and

suggests that the conditional F or t test based on provide more reliable results. We thus com-

pare the p-values of the conditional t-test for intercepts provided in lme with our proposed

t-test.
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Figure 5: Estimated type I error rates based on 10,000 simulation replications. We simulated data sets from

model (1) with µ = 0 and n0 = 10. The intra-cluster correlation ρ varied from 0.1 to 0.9, and the number

of blocks K varied from 2 to 20. We then performed a two-sided test for the H0 : µ = 0 using the R lme

function and the block t-test proposed in Section 2. The nominal test size is 0.05. For the lme test, we used

the p-value for the fixed effect provided by the function. For both tests, the estimated type I error rates were

computed as the proportion of rejections among the 10,000 replications. Left : The type I errors are in general

inflated and severely inflated when the intra-cluster correlation is large and the number of independent blocks

is small. When K = 20, the effect from ρ is ignorable and the type I error rates platforms. However, it is still

clear that the real test size (0.064) was larger than the nominal 0.05. Right : The test size is well maintained

by the block t-test.
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We notice that the p-value provided by lme is biased and tends to be too small under

the null hypothesis. The statistical inference for fixed effect relies on the asymptotic normal

theory, which is known to be inadequate for small sample data (Kenward and Roger, 1997).

More importantly, lme uses n −K as the degrees of freedom of µ in its statistical inference,

which is correct assymptotically, but ignores the contribution of the random effects themselves.

It has been controversial in deciding the degrees of freedom in the statistical inference for fixed

effect in linear mixed effect models (See e.g., Pinheiro and Bates, 2002). It is suggested (Feng

et al., 2001; Small et al., 2008) that the degree of freedom for the fixed effect should be the

number of random groups minor one. We thus corrected the p-values using K−1 as the degree

of freedoms. Shown in Figure 6 are the Q-Q plot of the uncorrected/corrected lme p-values

and the proposed simple t-test. Unfortunately, this K − 1 rule is now too conservative when

K is small.

Figure 6: Q-Q plots of the lme p-values and the proposed t-test p-values. Data was simulated in a similar

scheme as in Figure 5 with K = 3 and ρ = 0.2. (A). The original p-value output of lme. (B). p-values

corrected by using degree of freedoms K − 1. (C). Histogram of the corrected p-values. The distribution does

not look normal, and relatively fewer points falls close to the lower end. (D). The three blocks in sample 280.

The between group variance is small, and MSA = SSA/(K − 1) = 0.02, while the within group variance is

relative large with MSE = SSE/K(n0 − 1) = 1.16. In this case, the standard error of Y is estimated by√
MSE/n = 0.196, much smaller than the standard error used in the t-test

√
MSA/n0 = 0.04.

What goes wrong? The standard errors provided in lme are estimated using REML. In the

balance design case, REML estimates can be illustrated by ANOVA (Faraway, 2005, Section
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8.1). Simple algebra reveals that fact that REML tends to over-estimate the standard errors.

REML estimates τ 2 and σ2 separately. In order to estimate τ 2 and σ2, note that the within

group sum of squares SSE =
∑K

i

∑ni

j (Yij − Y i·)
2 has expectation K(n0 − 1)σ2, and the

between group sum of squares SSA = n0

∑K
i (Y i· − Y )2 has expectation (K − 1)(σ2 + n0τ

2).

Hence, we may estimate σ2 as σ̂2 = SSE/K(n0− 1) and τ 2 as τ̂ 2 = {SSA/(K − 1)− σ̂2}/n0.

Unfortunately, the resulting τ̂ 2 may have negative values. The maximum likelihood procedure

indeed has the estimate τ̂ 2
+ = τ̂ 2 · I{τ̂2>0}. It is straightforward to see that the standard error

for Y is thereby inflated. By contrast, the simple t-test does not separately estimate σ2 and

τ 2, has an honestly unbiased estimate of the standard errors, and thus retains the test size.

Indeed, since the maximum likelihood estimate, namely, τ̂ 2, may be on the boundary of

the parameter space, special asymptotic properties should be taken into account (Self and

Liang, 1987). In some cases, an approximate scaled chi-square distribution might be derived

for the standard error of Y (See e.g., Lin, 1997).

Fortunately, when the number of independent blocks K is large, intra-cluster correlation ρ

is relatively large, or the effect size µ is large, the over-coservativeness of the K− 1 correction

rule does not affect the performance of lme test. In Figure 7, we illustrate the power difference

between the blockwise t-test and lme test, βlme(µ) − βblock(µ), as functions in ρ and µ =

0.3, 0.5, 1, and 2. When K ≥ 10, the two tests essentially have the same power; when K ≤ 4

and the true µ is large enough, the lme test is more powerful than the blockwise t-test; the

closer the ρ is to 1, the less conservative the lme test is; that the blockwise t-test is slightly less

powerful close to the end of ρ ↑ 1 is probably due to the fact that even the K − 1 correction

rule cannot completely control the inflated type I error rates of lme test under the null (data

not shown).

Another popular R function that implements linear mixed effect model is lmer in package

lme4. The author is aware of the problem of degrees of freedom and does not provide a p-value

in his function. We did not find significant difference between the t-statistics for µ provided

by these two functions (results not shown), hence we do not discuss lmer separately.
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Figure 7: Estimated power difference between the blockwise t-test and lme test based on 10,000 simulation

replications. Simulation details are the same as in Figure 5. The nominal test size is 0.05.

,t

5 Discussion

Powerful statistical inference highly relies on the validity of its assumptions. Violation of

these assumptions may lead to unreliable or even false analysis. Robustness is thus of crucial

importance in statistical analysis. Statisticians have studied the robustness of error distribu-

tion (Huber, 1981), heteroskedasticity (MacKinnon and White, 1985), model misspecification

(White, 1982), data dependence (Liang and Zeger, 1986), and other aspects.

In this paper, we studied the robustness against the independence assumption, which is

often the one that leads to the power of most statistical methodologies. We relaxed the i.i.d.

assumption and took a more credible block independence assumption. We have showed that

only the first few degrees of freedom are necessary–with a handful of independent blocks, the

blocks model can pertain most power.

On the other hand, if correlated date are treated independently, the risk of making type

I errors could be high even with very mild dependence. Since avoiding type I error is a more

important concern in many studies, we suggest that it would not hurt to assume some kind

of dependence, without substantial loss of test power.

Group structured data is very common. The structure may come with the data by design
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as in group randomized trials, or by the sampling scheme as in family-based studies, where

relatives in a pedigree will be recruited in the study. Sometimes, group-wise in/dependence

might also be implicit, for instance, due to the population or spatial mixture nature of the

data. Another kind of implicit group structure may also be caused by the different sources

of the data. For example, It is very common in education research and medical research to

combine data from difference resources and then perform meta-analysis (Egger and Smith,

1997; Pena, 1997). In genetic and genomic research, pooling sequencing data together can not

only help strengthen the signal (for example, van Vliet et al., 2008) and sometimes achieve a

genome-wide significance under the Bonferroni correction, but also help impute untyped SNPs

that will lead to exciting findings (Willer et al., 2008; Li et al., 2009). However, because of

the difference locations of studies or different genotyping platforms used in each study, simply

pooling the data together might cause dependence. Unaware of these group structures might

be dangerous and be in high risk of overstating significance.

In this paper, we advocated a simple block-wise t-test, which uses the sample standard

deviation of the group means to estimate the standard error of the estimate. A more careful

choice of the standard error is to use the sandwich estimator (Liang and Zeger, 1986)

s =
1

n

√√√√ K∑
i=1

ni∑
j,k=1

(Yi,j − Y )(Yi,k − Y )

as an estimate of the standard deviation of group means. This approach has been widely

applied in analyzing correlated data. In some cases knowing the covariance structures can

lead to more powerful tests (for example, Thornton and McPeek, 2007). However, with small

number of independent groups, the sandwich estimator is biased and underestimates the

standard deviation. Hence, the sandwich estimator based statistical inference should be careful

with small sample (Fay and Graubard, 2001; Mancl and DeRouen, 2001).
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A Appendix

A.1 The power functions in Section 2

Without loss of generation, presume that the hypotheses are H0 : µ0 = 0 versus Ha : µ0 > 0;

ni ≡ n0 and σ2
i ≡ σ2, i = 1, . . . , K.

Notice that the rejection region for a level α test is {T ≥ tn−1,α}. The power of this test with

s = s1/
√
n at µ0 = µ is

1− βiid(µ) = 1− Fn−1

(
tn−1,α −

µ

s1/
√
n

)
, (7)

where Fn−1(·) and tn−1,α are respectively the cumulative distribution function, and the 1− α

quantile of a student’s t distribution with degrees of freedom n− 1.

Taking s = s2/
√
K, the power of a level α test at µ0 = µ is

1− βblock(µ) = 1− FK−1

(
tK−1,α −

µ

s2/
√
K

)
, (8)

where FK−1(·) and tK−1,α are respectively the cumulative distribution function, and the 1−α

quantile of a student’s t distribution with degrees of freedom K − 1.

A.2 The type I error probabilities in Section 3

In general the sample distribution of (n−1)s2
1 =

∑
i,j(Yi,j−Y )2 does not have a χ2 distribution

unless ρ = 0. Hence, the distribution of the Tiid is not easy to formulate. To simplify this

calculation, we suppose σ is known.

Suppose some careless statistician performs an α level test on H0 : µ = 0 versus Ha : µ > 0,

mistakenly using statistic

Zw =
Y

σ/
√
n

(9)

with rejection region {Zw ≥ zα}.

Since under H0 : µ = 0,

Y /σ ∼ N

(
0,

1

n
+

(n0 − 1)ρ

n

)
,
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the true type I error probability is

α(ρ) = 1− Φ

(
zα√

1 + (n0 − 1)ρ

)
. (10)
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