Deterministic Calibration with Simpler Checking Rules

Dean Foster University of Pennsylvania

and

Sham Kakade

University of Pennsylvania

April 12, 2005

The problem: Learning Nash equilibria

Current methods are slow and involve exhaustive search.

Can a fast method be found?

How about for special form games?

Measuring complexity

Two definitions of speed of convergence:

- total CPU used
- number of rounds of play

History

	Forecast probability	Forecast utility
Blackwell	CE	CE
	Calibration	No regret
	(F. and Vohra, '97)	(F. and Vohra '97)
		(Hart and Mas-Colell '00)
Exhaustive	NE	NE
search	Hypothesis testing	Regret testing
	(F. and Young '03)	(F. and Young '05)
		(Germano & Lugosi '05)
Public	NE	NE
methods	Weak calibration	Weak utility estimation
	yesterday's talk	today's talk
	(Kakade and F. '04)	(Kakade and F. '05)

Speed (rounds of play)

	Forecast probability	Forecast utility
Blackwell $(\rightarrow CE)$	$(1/\epsilon)^{a^n}$	$(a/\epsilon)^2$
Exhaustive search (→ Nash)	$\gg (1/\epsilon)^{a^n}$	$\gg (1/\epsilon)^{an}$
Public methods (→ Nash)	$(1/\epsilon)^{a^n}$ $2^{ \mathcal{I} }$	$(1/\epsilon)^{an}$ $ \mathcal{I} ^{\log \log \mathcal{I} }$ (with constant a)

n = number of players a = number of actions per player $\epsilon =$ desired accuracy $|I| = a^n =$ input size (a is fixed)

(CE: Blackwell gives fast approx algo. NE: slow, few computational results known.)

Background: Testing functions in calibration

- X_t sequence to be forecast by p_t
- Weak calibration, means

$$\frac{1}{T}\sum_{t=1}^{T} (X_t - p_t) w(p_t) \to 0$$

-w() is any smooth function.

- What Sham talked about yesterday.
- Today's twist: Use other testing functions. Eg

$$\frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) \ w(p_t, X_{t-1}) \to 0$$

Would test for Markov patterns.

Relationship between testing functions and conditional expectation

• "Advanced" version of conditional expectation

$$E\left[\left(X - E(X|Y)\right) \ w(Y)\right] = 0.$$

- X, and Y are random variables
- -w() is measurable. (Can restrict w() to be smooth.)
- We should assume E(X|Y) = h(Y) for some measureable function h()
- Contrast with our definition:

$$\frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) \ w(p_t, X_{t-1}) \to 0$$

- can think of $p_t = \widehat{E}(X_t | X_{t-1}, p_t)$
- If we could enforce measurability we might get uniqueness and then this notation would be useful.

Individual vs Public calibration

- Game setting for calibration
 - $-X_{i,t}$ is the observable that player *i* cares about at time *t*
 - $p_{i,t}$ is a forecast of $X_{i,t}$
- Individual calibration:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$$

• Public calibration:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_t) \to 0$$

The game model

- Player i uses $p_{i,t}$ to predict the round t
- Player *i* then use smooth decision rule $s_i(p_{i,t})$ to pick the probability of their play in round *t*.
- Player i then randomly action S_i from this distribution

Observables

• Game setup:

- Take $X_i = S_{-i}$ (i.e. all actions but player i)

 $- p_{i,t}$ is forecast of $X_{i,t}$

• Individual calibration:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$$

• Public calibration:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$$

Convergence

- Suppose players play a smooth best reply to forecast $p_{i,t}$.
 - Traditional calibration \rightarrow correlated equilibria
 - Public calibration \rightarrow Nash equilibria
- Speed of convergence is related to dimension of the "Hilbert space" of the testing functions
 - For individual: dimension $(1/\epsilon)^{a^n}$
 - For public: dimension is $(1/\epsilon)^{na^n}$
 - Hence convergence is slow in both cases.
- Need lower dimensional space, but what can be changed?

Proof: Public calibration converges to NE

- Truth \approx prediction
 - via calibration
- Truth is independent
 - Given \vec{p} each player is in fact playing independently
- *\epsilon*-rationality
 - ϵ -BR to prediction
 - p_i includes information about what all other players will do
- Independence + ϵ -rationality = ϵ -NE.

What can be changed?

Utility estimation

• Take $X_{i,t}$ to be the vector of potential payoffs

 $-\vec{S}_{-i}$ is the vector of everyone else's play

$$- u_{i,t}(k) = u_i(k, \vec{S}_{-i,t})$$

$$- X_{i,t} = (u_{i,t}(1), \dots, u_{i,t}(a))$$

• Utility model

- $p_{i,t}$ is an estimate of $X_{i,t}$ made at time t-1

- For CE we need

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$$

- For NE we need

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$$

Speed of convergence of utility estimation

- For CE: number of rounds is $O((n/\epsilon)^a)$
- For NE: number of rounds is $O((n/\epsilon)^{an})$
- Looks almost polynomial in length of input
 - $|I| = a^n =$ input size (*a* is fixed)
 - number of rounds is $O(|\mathcal{I}|^{\log \log |\mathcal{I}|})$
 - "pseudo Poly".
- Although exp in *a*, little known computationally.

Graphical Models for Game Theory

- Undirected graph capturing local (strategic) interactions (Kearns, Littman, & Singh)
 - Each "player" represented by a vertex
 - Payoff to i, is only a function of neighbors actions
 - Compact (yet general) representation of game
 - Assume max degree is d, then representation is $O(na^d)$ instead of $O(a^n)$.
- Can graphical games be learned faster than general games?

Need smaller observable set

- $X_{i,t}$ need only capture plays of neighbors
 - N(i) is the set of neighbors of i (assume $|N(i)| \le d$)
 - $S_{N(i)-i}$ is actions of all neighbors excluding self
 - $u_{i,t} = u_i(S_{i,t}, S_{N(i)-i})$
 - $p_{i,t}$ is forecast of $X_{i,t}$
- Same proof as before shows that for a NE we need

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_t) \to 0$$

• But we desire to to better for structured games.

(This is $(1/\epsilon)^{na^d}$, while the representation of a graphical game is na^d .)

Don't need to check as much

- We don't need to check $w(\vec{p_t})$
- Instead we can check only

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \to 0$$

where $\vec{p}_{N(i),t}$ is a vector of all the p's of all the neighbors of i.

- Since this is all that matters in $u_i()$, rationality against this set is rationality against the entire \vec{p} .
- Complexity: $n(1/\epsilon)^{a^{2d}}$
- The complexity is $|\mathcal{I}|$.
- NOTE TO SELF: No matter how excited you are about a complexity, never, write it as $|\mathcal{I}|!$

A even smaller observable set

- $X_i = personal utility$
- $p_i =$ forecast of personal utility
- w() is local:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \to 0$$

- Converges to NE.
- Complexity: $n(1/\epsilon)^{a^d}$

A system based on trust

- $X_i =$ action taken
- $p_i =$ forecast of own action

(

- decisions are made based on other peoples forecast of themselves
- w() is local:

$$\forall i \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \to 0$$

- Converges to NE.
- Complexity: $n(1/\epsilon)^{a^d}$
- Violations can cause the system to crumble

Summary: Complexity of Learning in Graphical Games

Speed of convergence:

- Complexity: $n(1/\epsilon)^{da^d}$
- Recall, game representation is na^d
- Hence, the max degree is the bottleneck!
- Can get better results with utility forecasts: $n(1/\epsilon)^{da}$

CPU time:

- For tree games, fast per round computation
- Total CPU time comparable to NashProp
- For general graphs, could be hard to make forecast each round

See reverse side of handout for related readings