Deterministic Calibration with Simpler Checking Rules

Dean P. Foster / Sham Kakade April 12, 2005

	Individual calibration	Public calibration
Predicting actions $X_i = \text{other people's}$ actions $p_i = \text{forecast of } X_i$	$\rightarrow \epsilon \text{-CE in } (1/\epsilon)^{a^n} \text{ rounds}$ $\frac{1}{T} \sum_{t=1}^T (X_t - p_t) w(p_t) \rightarrow 0$	$ \rightarrow \epsilon \text{-NE. Naive in } (1/\epsilon)^{na^n} $ rounds, improved in $(1/\epsilon)^{a^n}$. $ \frac{1}{T} \sum_{t=1}^T (X_t - p_t) w(\vec{p_t}) \rightarrow 0 $
Predicting utililities $X_i = my$ utility $p_i = \text{forecast of } X_i$	$\rightarrow \epsilon$ -CE in $(1/\epsilon)^a$ rounds $\frac{1}{T} \sum_{t=1}^T (X_t - p_t) w(p_t) \rightarrow 0$	$ \overline{ \begin{array}{c} \rightarrow \epsilon \text{-NE in } (1/\epsilon)^{an} \text{ rounds} \\ \\ \frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) w(\vec{p_t}) \rightarrow 0 \end{array} } $
Neighbors' actions $X_i = \text{actions of neighbors}$ $p_i = \text{forecast of } X_i$	no-speedup over public	$ \overline{\frac{1}{T}\sum_{t=1}^{T} (X_t - p_t) w(\vec{p}_{N(i)-i,t}) \to 0} $
Graphs/utilities $X_i = \text{my utility}$ $p_i = \text{forecast of } X_i$	no-speedup over public	$ \overline{\frac{1}{T}\sum_{t=1}^{T} (X_t - p_t) w(\vec{p}_{N(i)-i,t}) \to 0} $
Linear regrets $X_i = my$ utility $p_i = $ forecast of X_i	$\rightarrow \text{CE in } (1/\epsilon)^2 \text{ rounds}$ $\frac{1}{T} \sum_{t=1}^T (X_t - p_t) l(p_t) \rightarrow 0$	conjecture: \rightarrow NE? In $(1/\epsilon)^2 a^n$? $\frac{1}{T} \sum_{t=1}^T (X_t - p_t) l(\vec{p}, \vec{p}^2, \dots, \vec{p}^n) \rightarrow 0$
Trusting neighbors $X_i = \text{my play}, p_i = \text{forecast of } X_i.$ There is no protection against failure to follow the protocol.	Doesn't converge?	$\rightarrow \epsilon$ -NE in $(1/\epsilon)^{da}$ rounds $\frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) w(\vec{p}_{N(i)-i,t}) \rightarrow 0$

General information

At each round, players compute $p_{i,t}$ and use it to make their decision of what to do in round t. They always use a smooth best reply function. In all but the "trusting neighbors" rule, they will be guarenteed to have good forecasts (i.e. calibrated) to base their decisions on.

- ϵ = target accuracy
- n = number of players
- a = number of actions each player has
- d = number of neighbors each player has
- w() = smooth bump function
- l() = linear function

CALIBRATION

• Origin of calibration

- Dawid asked whether calibration existed: Dawid, A. P. (1985) "The well calibrated Bayesian." JASA.
- Oakes answered no: Oakes, D. (1985) "Self-calibrating priors do not exist," JASA.

• Blackwell approachability

- Blackwell, David (1956) "An Analog of the Minimax Theorem for Vector Payoffs," *Pacific Journal of Mathematics*, 6. (Easier to find is Luce and Raiffa *Games and Decisions* Appendix 8.6, p 479 483.)
- For a review paper that discusses how to use Blackwell for calibration, see: Foster, D. and R. Vohra (1999) "Regret in the On-line decision problem," *Games and Economic Behavior*, 7-36.

• No regret and calibration

- Foster and Vohra's first proof of the existence of calibration/no-regret (in 1991) wasn't convincing. Eventually it came out as: Foster, D. and R. Vohra (1998) "Asymptotic Calibration," with R. Vohra, *Biometrika*, 379 390.
- Other proofs
 - * Fudenberg, D. and D. Levine (1999) "An easier way to calibrate," *Games and Economic Behavior*.
 - $\ast\,$ Foster, D. (1999) "A proof of calibration via Blackwell's Approachability theorem," GEB.

LEARNING in GAMES

• Calibration converges to CE

- "Calibrated Learning and Correlated Equilibrium," with R. Vohra Games and Economic Behavior, (1997) 21, 40-55.
- Hart, S. and A. Mas-colell (2000) "A simple adaptive procedure leading to correlated equilibrium," *Econometrica*, **68**, 1127 1150.
- Exhastive search converges to NE
 - "Learning, Hypothesis Testing and Nash Equilibrium," with H. P. Young, Games and Economic Behavior, 2003, 73 - 96.
 - "Regret Testing: A simple payoff-based procedure for learning Nash equilibrium," with H. Young, under revision for *JET*.
 - Germano, Fabrizio and Gabor Lugosi, 2005, "Global Nash convergence of Foster and Young's regret testing," mimeo.

• Public calibration converges to NE

- "Deterministic Calibration and Nash Equilibrium" with with Sham M. Kakade, 2004, COLT.
- This talk. Coming soon on our web pages:
 - * http://gosset.wharton.upenn.edu/~foster/
 - * http://www.cis.upenn.edu/ \sim skakade/

 $Contact\ information:\ dean@foster.net\ /\ skakade@linc.cis.upenn.edu.$