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Abstract

In recent paper, Antos and Kontoyiannis [1] considered the problem of estimating the en-
tropy of a countably infinite discrete distribution from independent identically distributed
observations. They left several open problems regarding the convergence rates of entropy
estimates, which we consider here. Our first result, is that the plug-in estimate of entropy is
as efficient as a match length estimator when applied to the class of memoryless sources on
a countable alphabet with finite entropy and finite entropy “variance”. Our second result
provides lower bounds on the convergence rate of any sequence of universal estimators of en-
tropy over the same class of distributions. Finally, we consider an estimator based on match
lengths that achieves this lower bound to first order. The surprising conclusion that follows
is that a match-length estimator is first order optimal over the simplest class of distributions
for which entropy estimation is non-trivial. We describe how this in turn implies that the
Lempel-Ziv algorithm has an optimal convergence rate among the class of universal data
compression algorithms over the arguably simplest class of non-trivial sources.

Keywords: Entropy estimation, Coding, Lempel-Ziv algorithm, countably infinite alpha-
bets, lower bounds, redundancy.



1 Introduction

We begin with some definitions. The entropy H (P) is a smooth functional of the distribution
P. The problem of entropy estimation given sequences of i.i.d. random variables is quite
naturally solved by a plug-in estimate

=Y P,(i)log Pu(1),

€A
where P, (-) is the empirical estimate of the distribution P on discrete alphabet A of i.i.d.
random variables Xy, X5,..., X,,. For a memoryless source, P, is the maximum likelihood
estimate of P as well as a sufficient statistic for X7'. The Rao-Blackwell theorem implies
that the best estimate of the source entropy should be a function of the sufficient statistic
for example the plug-in estimate H (P,). The plug-in estimate is universal and optimal not
only for finite alphabet i.i.d sources but also for finite alphabet, finite memory sources. On
the other hand, practically as well as theoretically, these problems are of little interest.

We consider here the simplest extension of the class of finite alphabet finite, finite memory
sources, namely, the class P of memoryless sources on a countable alphabet with H® < oo
for some r > 2. Where

H"(P) = E(—log P(X))".
The special case of interest is with r = 2. Universal entropy estimation over P is again natu-
rally accomplished using H(P,) (since P, is still sufficient for P). But now even consistency
is not obvious and universal convergence rates can be arbitrarily slow (see [1]). In the finite
alphabet case the convergence rate of H(P,) to H(P) occurs at rate

where

0? = Var{—log P(X)}.
We call 2 the “entropy variance”. In contrast, the convergence of H, to H can be arbitrarily
slow for any universal estimator. Antos and Kontoyiannis prove that for a much smaller class
of discrete distributions which satisfy a sharp tail condition it is possible to demonstrate that
the plug-in estimator converges at rates

~OMn P for0< B <1

where 3 depends on the precise rate at which the tail vanishes. On the other hand for
the much more natural class P of discrete distributions on a countable alphabet with finite
entropy and finite entropy variance they show that a non-parametric estimate based on
match lengths converges at the tortoise like rate of

L
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They were unable to prove that the plug-in estimate converges even at this rate. Furthermore,
they conjecture that

~ O



“the rate {n_r;rl} can be achieved if we restrict ourselves to the case where H) <
oo at least for 1 < r <27,

The main aim of this paper is to resolve each of these conjectures. We begin by establishing

that for the class of distributions P discussed above that there can be no universal estimator
H that converges to H at a rate faster than O(W) for all sources P € P and any
€ > 0. This is a generalization of the result in [1] where it is shown that there exist a family
of distributions for which the plug-in estimator of entropy does not converge faster than
O(ognyiea)-
This lower bound is particularly interesting since it is so slow. The implication is that no
method of entropy estimation can converge rapidly (in a true sense of the word) even when
one assumes a source to be memoryless and with bounded entropy variance. Consequently,
universal rapid rates of convergence do not exist under natural assumptions outside of the
simple class of completely finite (finite alphabet and finite memory) distributions.

Remarkably this lower bound is in fact achieved by a non-parametric estimator based on
match lengths. We shall prove that this estimator H (n) is eventually almost surely within
(iggff of H(P) for any p € P. Since this is to first order the best possible rate of convergence
among distributions in this natural class we conclude that the match length estimator has
the best rate of convergence among all estimates of the entropy that are consistent for all

PeP.

1.1 Coding and Entropy Estimation

Scientists, mathematicians, information theorists, computer scientists, and others have all
longed for a precise and measurable way to define the complexity of an individual sequence.
This tantalizing theory sets up three levels of problems of various difficulty. On the first level,
we consider the individual sequences themselves with no restrictions. This is an impossible
problem at best, and an attractive nuisance at worst. The theory of Kolmogorov complexity
while elegant, can serve only to bound complexity but never to know it. On the second
level, we can impose a stationary probability model and define complexity to be entropy.
This condition transforms complexity into a property of the source and the problem becomes
estimation. If we assume further that the data generating source is ergodic then we can define
asymptotically consistent procedures for estimating entropy [3]. Finally, on the third level
we talk about memoryless sources: the arguably simplest class of data generating probability
models. The problem of estimating the entropy of a memoryless source, which we shall take
up here, is actually not quite so trivial.

The Kolomogorov Complexity of an individual sequence is the length of the shortest
universal computer program that can output the sequence. It cannot be computed but it
can be bounded. When the data generating source is a stationary ergodic process then
the Kolomogrov complexity will equal, with high probability and on average, the process

4



entropy rate. This sets up a nice duality: a good code is therefore a good estimate of
entropy. Conversely, lower bounds on the performance of entropy estimators are also lower
bounds for coding. In this section we stress the implications of this duality.

It is not widely known, but the motivations behind the Lempel-Ziv [6] data compression
algorithm were centered only indirectly on coding and more directly on the problem of finding
a practical scheme to estimate entropy of an individual sequence. It is well known ([11], [10],
[9]) that the Lempel-Ziv algorithm (in any number of its versions) can achieve a coding
redundancy, when applied to finite alphabet, finite memory sources, that is @ p(loén). With
countable alphabets the coding problem becomes harder (see [7]). With restrictions (such
as montonicity) it is possible to determine asymptotic redundancies for countable processes
(see [4]). But our results nevertheless imply that an entropy estimate based on the average
code redundancy that is at least Q(@) This suggest that the coding redundancy of the
Lempel-Ziv algorithm as well as other “grammar” based codes [5] are to first order optimal
with respect to the class of countable memoryless sources with bounded entropy and entropy
variance. Indeed, this class is arguably the simplest class of sources outside of finite alphabet
finite memory sources, which suggests that the slow rate of convergence to the entropy is an
intrinsic difficulty and not a shortcoming of the algorithm.

2 A Universal Lower Bound

The asymptotic equipartition theorem connects the entropy to the exponent of the cardinality
of the typical set. As such, it is easiest to think of the entropy as an “effective” population
size and an estimator of entropy as an attempt to count that effective population size. This
is particularly difficult if there are an extraordinarily large number of extraordinarily rare
symbols. For a memoryless source, the counting process is analogous to a fisherman who
wants to estimate a population of fish. Knowing only how to fish, he heads out to sea to
capture, label and release. Clearly, he can only upper bound the population when a fish is
recaptured. Until the first recapture point, no upper bound on the population can posited
(at least not with finite mean squared error). In this work, we will play the part of the
fisherman. The challenge is to construct two populations satisfying certain constraints that
are as different as possible, and for which recapture is not likely for either population . It
follows, that in such an event, no estimator can distinguish between the two populations.
We will need to construct an uncountable family of distributions on our countable alphabet.
This is a difficult construction and we will do it twice: first on sets and then using random
variables.

We will define a family of random variables indexed by a infinite binary sequence ujusus...
which we denote u. To this end we consider sets Ay. For every k each A; is partitioned
into subsets A;;. Each of these sets consists of atoms {a;;; }in arbitrary countable alphabet
A. We define a distribution P, and a random variable X, by assigning probabilities to the



atoms {a;;;} and the sets Ay and A;;,. Therefore X, is a family of random variables on the
countable space {a;ji}.

We begin by assuming that we have a sequence of integers {n;} that goes to co. We will
choose {n;} later when our ends become clearer. Our first step is to assign probability to
the collection of atoms in A; so that for every u

1

PI"{XU S Ak} = W, (1>

where € > 0 is arbitrary. Next we assign equal probability to the sets A;; contained in Ay

so that
1
72.

Ny
Since A = U;{a;} we conclude that i =1,2,...,1,,, where

PI"{Xu S Azk} =

I i
ng (log nk)2+e '

Now assume that A;; contains n, atoms. We introduce the dependence on u by letting X,
equal the first atom if u; = 0 and a randomly chosen atom if uy = 1. Formally, if vy = 0 we
let Pr{a;;} = 0 for all j > 1, which means that if X,, € A;; then X,, = a;15. On the other
hand, if uj, = 1 then we choose equally among the the atoms {a;;; € A} so that

1
Pr{a;;r} = 3
k

Now that we have carefully constructed P, in context we can back out a simpler definition.
Given binary u € [0, 1] and sequence ny for k = 1,2, ..., choose integer K with

1

P g

integer I conditionally with

(lOg nk)2+e

2
g

P(I =i|lK = k) =

and J with .
P(J=j|K =ku.=1)=—
N

otherwise P(J = 1|K = k,u, =0) = 1.



Let’s begin by computing the entropy of X, for any w.

H(X,) = - i P(A))[u;logn? + (1 — uy) log n?] (2)
> 2
3 g * () g ¥

Now let’s check that for every u, X, has finite entropy and entropy variance. We may assume
that u; = 1 for all £ and observe that for this choice

H(X,) = Y —Plaj)logP(a).

ijk

=2
-2

1 .
logﬁ log ni
3

logny e

In order for H(X,) to be bounded we need n;, go to go to infinity at least as fast as 2*.
The entropy variance of a random variable X is the second moment of the the log likelihood.
It is easy to see that for all u, X, has bounded entropy variance for an appropriate choice
of nj. Again, we may assume that u, = 1 for all k. We compute:

Ellog P(X,)]* = Z—P(aijk)(logP(aijk))2.
72%(10%”%)2

B Zlogn
- ¥; )

—~ (logng)©

1

Thus X, will have bounded entropy and entropy variance for appropriate choices of nj that
tend to infinity fast. Two possible choices are ny = 22" and n; = 2 with

Ng+1 = AL

Now suppose that we define v and «’ to differ only on coordinate k for which u, = 0 and
uj, = 1. Then it follows from (3) that

3 2
[(108; ng)+e  (log nk)1+ﬁ] (4)
b
(log ny,) e

H(Xw) - H(X.) =
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If we suppose further that nf*! = 2™ we can consider the more general situation when
ug = 0, uj, = 1 but with coordinates satisfying only the restriction u; = w for i < k. In this
case we compute

3 B 2 n
(10g nk)l+€ (log nk)l-i-e
o 3 2
2 i l—u)— s
t;_l[ut (log nt)1+e + ( ut) (log nt)l—i-e
1 1

(log nk>1+e o ;k

[H(Xw) — H(Xy)| =

(6)

(8)

To recap, we have now created two probability distributions each with finite entropy and
entropy variance, whose entropy is "far” apart in the sense of (5). Our goal now is two
connect the pair (X,, X,/) so that with high probability a sequence of independent copies
(Xuis X ) for i = 1,2,... will be indistinguishable.To do this, we introduce a coupling
which builds X, and X, on the same probability space so that X, = X, unless X € A;. In
that event, X, is chosen independently from the atoms in {a;j;} € A while X, is chosen
independently from the atoms {a;1; € Ax}. It follows that

1
r{ } (log ny,)%te
since Pr{X, € Ay} =1— W'

Suppose we repeat the coupling to produce n; independent identically distributed copies
of the coupled random variables (X,, X,/). To make things more fun, we assume that we
observe the entire sequence X, ; or X,/ ; but it is unknown whether we are observing X, or
X,. Furthermore, we assume that a competitor observes the opposing sequence! Let H (ng)
be our estimate and let H’ (ng) be our competitor’s estimate.

Now let f]nk be an estimate of entropy derived from n; observations. We say that any
estimate H(XT) is a consistent estimate of entropy if lim, . Hn(X7) = H(X). Tt is said
to be universally consistent for the class P of probability distributions if for every P € P
the estimate H, is consistent. Let H be the set of universally consistent estimators over
P. Now the entropy is a function of the likelihood function P(-). If there is no connection
between the alphabet A4 and the probability function mapping symbols a € A into [0, 1] then
it may be assumed, without loss of generality with respect to worst case performance, that
every estimator H € 'H is invariant with respect to one-to-one mappings of the symbols of
A into itself. With this property in mind, we say that two sequences of random variables
Xui € Aand X, ; € A are equivalent (=) if there exists a one-to-one relabeling such that
the relabeled sequences are permutations of each other. This will be true if the empirical
probability distributions are the same. We now state and prove a lemma which establishes
that with high probability { X, ;}i%; = {Xuw i}ty
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Lemma A: Let {X,}1* and {X, }/*be i.i.d couplings as defined above. Then there
exists a d,, < 1/2 such that for all ny:

Pri{X, 1" 2 {X,}*} > 1—6,,.

Proof: The result is actually quite simple given the construction. For an invariant one-to
one mapping not to be possible, there must exist a symbol a € A that occurs at least twice
in either sequence. The probability of this event is easily bounded. We begin first with
{X.}1". Let Z be the number of atoms in Ay that occur twice in {X,}*. Then

ng—1 ng
EZ = Z ZPI‘{‘XVU,Z = Xu’j S Ak}

i=1 j=i

Now each atom in A, has probability n% of occurring it follows that
k

nk(nk — 1)

EZ::——3——PﬂXweAﬁPﬂXw:meweAﬁ
- 2 (logng)*n}
1
= 2logny)>
1
)

Now it follows from the Markov inequality that

1
Pr{Z>1}<EN< ————
HZz1)s ~ 2(logny)?te
Which implies that
1
Pr{Z=0}>1-———-—=1-9,,.
HZ=0 21 Siog e :

Now let Z’ be the number of symbols in Ay that occur twice in sequence { X,/ }1*. Since each
a € Ay, has probability n% it is easy to follow the steps of the preceding bound to show that
k

1 )
Pr{Z =0} >1— =1 %
r{ e 2ny (log ny )2+e N

Now, observe that

Nk ~v ng 1

This completes the proof of the lemma.



To review, we are now in possession of two key facts: that there exist two distributions with
finite entropy and finite entropy variance that are quite different with respect to entropy, yet
are likely to be mathematically invariant with respect to universally consistent estimators of
entropy. We formalize this in the following:

Theorem A: Let P be the space of probability distributions on countable sets with finite
entropy and finite entropy variance. Let A > 0 be arbitrary. Then there does not exist an
invariant universal estimator H,, that is uniformly O P(W) consistent over P.

To prove this, construct coupled X, and X, for any ¢ < A. Lemma A implies that
with probability greater than 1/2 and tending to one, the two sequences are equivalent
with respect to one-to-one relabeling of the symbols. We now proceed by contradiction.
Suppose that X7 and Y]" sequences of random variables whose distributions belong to P.
Now suppose that Hisaa universally consistent estimator for which there always exists an
N so large such that for all n > N the following inequalities hold with probability arbitrarily
close to one:

~ C
< 1

|H(XT) — H(X) (log )& (9)
H(YP) — HY)| (lgi)A (10)

Now let X" and Y]" be the coupled pair (X,, X,/) for k large enough that ny = 2™ =n
for some n > N. Now Lemma A implies that the two estimates are identical with positive
probability. On the other hand, equation (1) reveals that the entropy of Y is greater than
entropy of X by an amount larger than permitted by equations (2) or (3). Thus either (2)
or (3) must be false, proving the theorem.

In the proof of theorem of A we chose to let
Ng11 = 2nk

With respect to Theorem A, we could have gotten by with less since all that was required of
our choice is that for any pair (u, ) that differ in the k™ coordinate, the random variables
Xy, X had to be in P. Any choice that caused the entropy variance to be finite would
have worked. But we have a stronger theorem in mind, for which a more rigorous choice is
required. We have so far only proved that convergence at the Op(@) rate is not possible
uniformly over P (not by any universally consistent estimator). We shall now prove that
this convergence rate is not possible pointwise. That is, for any estimator H there exists a
P € P (whose choice depends on H ) that does not converge pointwise at the desired rate.
That is, no matter how large NN, there will always exist an n = ny > N with
. 1
n
HXT) = HX)| 2 o

with non-vanishing probability.
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The result is already almost in our grasp. The trick is to construct a limiting “bad”
distribution (i.e. a distribution for which (9) fails to hold) out of a sequence of distributions
that are bad for n = n;. The main idea is as follows. If the first k coordinates of u and
o' differ only in coordinate k, then H cannot be too close to both H(X,,) and H(X,/) with
high probability. Here is where (8) becomes important. Since the entropy of X, and X, are
determined to within i by the first k& coordinates of u and u it follows that we can check
if (9) fails based only on the first k£ coordinates. Let u} be the value of either u; or wj, for
which the estimator is bad (if both are bad let uj = 0):

> b (11)

’[:[(XU*> - H(XU*> = (10g nk)1+e

with probability at least 1/2. Now, Let u* be the infinite binary sequence whose & coordi-
nate is u}. Let X,- be a random varaible with distribution P,-. We shall show that H does
not converge pointwise almost surely faster than W.

Since the construction of P, is inductive we need to show that for every k that (11) holds
unconditionally on the selection of uj_ ,,u} ,,.... To see that this is an issue, recall that
in the proof of Theorem A, we require that sequences v and v’ differ only at coordinate k.
Consequently, it becomes possible that the selection of w; will depend on coordinates of u
that are larger than k. Thus, as we proceed through the inductive process to select u;, for
ever larger k, we may alter the performance of the estimator at smaller values. To prevent
this problem in the sequel to Theorem A, we must only require that u; = u} for all i < k.
This is where our choice of n; becomes critical. The coupling of X, to X, forces the pair
to agree unless X, € Ay. Using n; as defined and noting (1) it follows that

1
I>k <k U
Now let Gy = {w : VI < nF X, (w) & U= Ai}. So Gy, implies that no atoms in A; appear
for [ > k in the sequence {X,}?",. A crude bounding operation shows that

1
Pr{Gy} < — =9 —0as k — 0.
M

Since GJ, does not occur except for a finite number of times, it follows that H, except for
a finite number of k, is independent of the values of u; for [ > k. It follows that for &
sufficiently large we can determine the value of u; for which the estimator will be bad based
only on the values of uj, u3, ..., uj;_;. We can now conclude the section with a theorem.

Theorem B: For any estimator H and any € > 0 there exists a distribution P € P and
random variables X7, Xy, ... drawn i.i.d according to P for which the event

-

{|]{’(X?)_H(X)| 2 W

occurs for infinitely many n.
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2.1 Local Limit: moving truth

So far we have considered the problem of entropy estimation in the context of sequence of
random variables X{° generated from a single source P from a fixed class P. Within this
context all finite alphabet memoryless sources exhibit fundamentally equivalent asymptotic
behavior. In essence, any finite problem, including finite memory Markov sources, are easy:
eventually, enough data can be accumulated to crush the problem into submission.

Statisticians have pursued a different approach to make the asymptotics of finite memory
processes more interesting. Instead of assuming that the source probability distribution is a
fixed P, we suppose that the data is actually a triangluar array X;, with n = 1,2... and
i =1,2,...,n. For each n the sequence X';’ is assumed to be drawn iid. from P,. In
this case, the truth “moves” with increasing n. The asympototics (often called local limits)
of such problems can be very different. For example, the definition of coding redundancy
has many definitions. It is most commonly defined in the sense as the difference between
the average code length and the entropy rate of the process. Alternatively, the redundancy
can be defined to be the ratio of the average code length to the entropy rate. In the usual
asmptotics, where P is fixed, the two£redundancies are equivalent (up to a constant). Thus,
if a code is optimal with respect to the usual redundancy it is also optimal with respect to
the relative redundancy. This is not true with local asynmptotics. There exist codes and a
sequence of probability distributions P, for which the sequence of relative redundancies tend
to infinity but the usual redundancy tends to zero. In fact, the Lempel-Ziv code is such a
code.

We will now formulate a corollary to Theorem B. The goal is to construct a limit theorem
that describes local behavior:

o Fix n. Assume that X, isiid. P, € P.
e For any estimator H,, find r(P,,n) = |H, — H(P,)|.

Corollary B: Let P, be a sequence of finite alphabet i.i.d. models satisfying a common
bound on the entropy variance. Then for all n and all estimators, there exists a P, € P,

such that ]

H,— H(P,)| =
\ (Pn)] P(logn

).
The proof of the corollary follows immediately from the proof of Theorem B. The virtue of

the local limit theorem allows us to restrict our model class tofinite models not countable
models.

3 LZ upper bound

In this section we consider upper bounds on the accuracy of entropy estimates based on
string matching. We begin, as usual, with a sequence of observations X7 from an i.i.d.

12



probability distribution P € P the set countable distributions with finite entropy and finite
entropy variances. The longest matching prefix L(n) is defined as follows:

L(n) = max{k : X¥ = inf for some 1 > n — k}
The usual match length estimate is

logn
L(n)

I:.,ML(’I%) =

Antos and Kontoyiannis demonstrated that

L
Jlogn”

We will provide an alternative prqof of this result. In the sequel,, we show that a slightly
modified match length estimator H’ys7,(n) satisfies

A/ (n) = H(P) + Op(—

).

logn

This will allow us to prove that the LZ algorithm is an optimal data compression algorithm
for P (the simplest class of non-finite probability distributions).

Our analysis follows the usual construction. We begin by considering the renewal process

whose it increment is — log P(X;). The time of the k™ renewal is given by
k
i=1

Let R(a) be the number of renewals that occur before a > 0 with 7, = R(a)+1. If a = logn
then T, is the length k of shortest prefix XF that has P(X}) < % This is a well studied
random variable for which it is easy to show (using Walds theorem) that

ESr, = H(X)ET,.
Since we desire notational simplicity let T'(n) = Tiog, . Observe that we can write
ESrmy =logn + E[Srm) — logn].

The second term on the right hand side is the mean excess which asymptotically equals the
second moment of the interarrival time divided by twice the mean (see Ross). Thus we have

E(log P(X))*

EST(n) = logn+ QH(X)

+0(1).

13



Equating our expressions for £'Sp(,) leads to

H(X) = logn  E(log P(X))? 1

= 5T T 2amx)ET T O BTy (12)

This suggests that a reasonable estimate for the entropy H (X)) could be obtained by plugging

in any estimate of ET(n) that is at least OP(IO;n) accurate. Specifically, assume that we can

find an estimate T,, for ET(n) satisfying

- 1
T, — ET(n)| = .
[, — BT ()] = on(ior-)
Then H, = 1‘%" satisfies
. 1
H,—H = )
i, — )| = Opl )

Our first attempt at estimating ET'(n) is with the random variable L(n) defined above.
Plugging L into 12 in place of ET(n) recovers HML(n). We shall show that L(n)) is in
fact a good estimate for ET'(n), although we can improve it. Consider the event the set of
sequences xf for which L(n) — T'(n) > k for some integer £ > 0. Let N; be the (random)
number of times the (random length) prefix X{ occurs in X)1". Observe that

{L(n) = T(n) > k} = {Nrgye > 0. (13)

In plain language, this implies that the set of sequences for which the longest matching prefix
is k greater than T'(n) is equal to the set of sequences for which prefix X 1T (™R has occurred
at least once in X7'. The distribution of A(n) = L(n) —T(n) is well known at least for finite
alphabet stationary mixing sources and of course Markov sources. For i.i.d. sequences on a
countable space the same results hold. Specifically, there exists 0 < 5 < 1 (dependent on P)

such that for all n

Pr{A(n) >k} < p* (14)
Pr{A(n) < —k} < Const.exp(—f3") (15)
EA(n) = O(1). (16)

We include a simple argument that proves the first inequality. It is easy to show using

indicators that
n)+k
ENp(mysr = nP(X] M.

Conditioning on X7 ™™ = 2+ and we have
T(n)+k
B[Nyl X{ W = ai™] = nP(al) P(aii) (17)
1
< nlpith (15)
n
< B (19)
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Equation 18 follows from the definition of T'(n) which implies that P(z}) <
follows by defining

. Equation 19

1
I e
Equation 14 follows by applying the Markov inequality to 13.
What now remains is to bound the left tail of A(n) and its expectation. A simple argument

will reveal the path of proof, for details we refer the reader to published work ([8]). As before
we, observe that

B[Npy X[ = 2™ = nP(ai ) = gic(zﬁ;fl%
This easily leads to the upper bound on the expected number of occurrences of XlT (n)=k.
E[Nrmy-i] = EE[NT(H)_,C|X1T(”)+’€ — 2]
1
< raréljl (@)
= 5—(16—1)‘

This proves that if the prefixes that are k shorter than T'(n) are expected to occur an
exponential number of times. It is not hard to show that this implies (15). Finally, since the
right and left tails of A(n) vanish rapidly, it is follows that EA(n) is O(1).

How good an estimate of ET(n) is L(n)? We know that L(n) is O(1) close to T'(n).
However, T'(n) is normal with mean O(logn) and standard deviation O(y/logn). Thus,

plugging in L(n) into (12) proves that Hysrx is only Op(1/4/logn) accurate. To improve
this we need only average. The obvious way to do this is to define

Li(n) = max{k : X1 = kail for some j € [1,n — K]}

and then let |
. nlogn
H'yip(n) = -
iz1 Li(n)
Because the sequence L;(n) is dependent it is tedious to attempt a variance calculation. An
easier approach, is to break up X} into y/n non-overlapping sequences. Then define L;(y/n)
to be the longest matching prefix into into the i*" segment. Then define

_ nlogy/n
Zi:\/ﬁl Li(y/n)

Since L;(y/n) are independent the average is a O(1) estimate for ET(y/n). The resulting

normalized estimate (since it uses y/n costs ﬁ. But the resulting estimate is Op(@)

]’.AI,ML(TL)
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accurate, which proves the following:

Theorem C: For any distribution P € P and random variables Xi, Xy, ... drawn ii.d
according to P the match length estimator H’jr(n) defined above satisfies:

H'yp(n) = H(P) + Op( ! ).

logn

4 Optimality of the Plug in Estimator

We have shown that a match length estimator can achieve the lower bound of Theorem B to
first order. It would be a strange universe indeed if the plug-in estimate was worse than the
match length estimator for memoryless sources. In this section, we establish that the plug-in
approach is as good as the match length approach. The basic idea is that by constraining
the entropy and the entropy variance the tail probability cannot contribute to much to the
estimate.

Our approach considers the performance of H (Fn) (the plug-in estimate) to the perfor-
mance of an oracle estimator defined as follows. Let € > 0 be arbitrary let p(i) be the
empirical estimate of p(i) and let

— > B(i)log (i) (20)

i:p(i)>e

Notice that H(e) can be computed only by an oracle that knows p(i) for every i. In effect, the
oracle estimator computes the plug-in estimate without the contribution of the rare symbols.
Thus we have the elementary relation

H(ﬁ’n) > ﬁ(e)

for every n and every e. Now our oracle estimate converges very nicely as n — oo provided
that € does not tend to 0 too quickly. Again using our oracle, define

— Y p(i)logp(i)

:p(i)<e

— > p(i)logp(i)
imp(i)>e

Clearly, H = H(¢) + H(e) for every e. If we choose ¢ tending to zero not too quickly in n,
say €, = ﬁ then it follows easily that

~

H(e,) — H(ep) — 0

uniformly over over P with a rate of convergence of O p(T)
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Theorem D: For any distribution P € P and random variables Xi, X5,... drawn i.i.d

~

according to P the plug in estimator H(F,) defined above satisfies:

1
logn

H(F,) = H(P) 4+ Op(—).

Our proof requires two very simple Markov inequalities.

Lemma D: Given any distribution P on the non-negative integers with finite entropy
and entropy variance. Then for any € > 0 the following hold

1 Var(P
> pilog — < — (1 ) (21)
1:p; <€ bi 0g €
Var(P)
> i< log 112 (22)
1:p; <€ g €
Proof: First observe that
1 1 1
> pi(log —)* > > pi(log —)(log -).
:p;<€ Di 1:p; <€ Di €

Inequality (21) now follows by noting that the left hand side above is upper bounded by
Var(P).

To prove (22) observe that

1 1
Var(P)> % pi(log—)*> > pi(log 2)2
i:p; <€ ? iip; <€
This proves Lemma D.
Proof of Theorem D: Now, if e = 1/y/n say, then
1 2Var(P
Y pilog— < 2Var(P) (23)
i:p; <€ Di logn
4Var(P
S p< vert?) (21)
iip; <€ (1Og TL)
By combining inequalities above we deduce that
. . 2 P
() > () > 1(p) - 2T oy

logn
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To establish an upper bound, we note that p; > % for every symbol ¢ and all n. Thus,

H(F,) < Y pilogpi+ > pilogn.

i:p; € i:p; <€
As before, with ¢, = n=2 it follows that

> pilogp; < H(P)+ O(”_%)-

ipi e

Applying (24) and we have that

. 4Var(P) 4Var(P)
E pilogn <logn = :
:p; <€ <10g n) 10g n

Putting it together and we have the upper bound

4Var(P) 1

H(F,) < HP) + +0(n"2).

logn

This proves the theorem.
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