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ASYMPTOTIC FILTERING THEORY FOR UNIVARIATE
ARCH MODELS!

By DANIEL B. NELSON AND DEAN P. FOSTER

Many researchers have employed ARCH models to estimate conditional variances and
covariances. How successfully can ARCH models carry out this estimation when they are
misspecified? This paper employs continuous record asymptotics to approximate the
distribution of the measurement error. This allows us to (a) compare the efficiency of
various ARCH models, (b) characterize the impact of different kinds of misspecification
(e.g., “fat-tailed” errors, misspecified conditional means) on efficiency, and (c) character-
ize asymptotically optimal ARCH conditional variance estimates. We apply our results to
derive optimal ARCH filters for three diffusion models, and to examine in detail the
filtering properties of GARCH(1, 1), AR(1) EGARCH, and the model of Taylor (1986)
and Schwert (1989).

Keyworps: ARCH, filtering, stochastic volatility.

1. INTRODUCTION

MosT ASSET PRICING THEORIES relate expected returns on assets to their
conditional variances and covariances. An enormous literature in empirical
finance has documented that these conditional moments change over time.
Practical experience (as in the 1929 and 1987 stock market crashes) reinforces
this conclusion. Unfortunately, conditional variances and covariances are not
directly observable, and researchers and market participants must use estimates
of conditional second moments. To create these estimates, they rely on models
which are, no doubt, misspecified. How accurate are these estimated variances
and covariances? How can researchers estimate them more accurately?

Since their introduction by Engle (1982), ARCH models have become a
widely used tool for estimating conditional variances and covariances. (See the
survey of Bollerslev, Chou, and Kroner (1992).) Suppose that for each ¢, &, is a
(scalar) innovation in a time series model. Interpreted as a data generating
mechanism, a univariate ARCH model assumes that

(1.1)  E,_,[¢£]1=0 and Var,_,[¢(]=072, with

(12)  02=02(£ 1 & g0enr).

! This paper is a revision of the working paper, “Estimating Conditional Variances with
Univariate ARCH Models: Asymptotic Theory.” We would like to thank two referees, a Co-editor,
Phillip Braun, John Cochrane, Enrique Sentana, reviewers for the NSF, and seminar participants at
the University of Chicago, Harvard /M.I.T., Michigan State, Minnesota, the SAS Institute, Washing-
ton University, Wharton, Yale, the 1991 Midwest Econometrics Group meetings, the 1991 NBER
Summer Institute, and the 1992 ASA Meetings for helpful comments. This material is based on
work supported by the National Science Foundation under Grant #SES-9110131. We thank the
Center for Research in Security Prices, the University of Chicago Graduate School of Business, and
the William S. Fishman Research Scholarship for additional research support, and Boaz Schwartz
for research assistance.
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That is, o is the conditional variance of ¢, given time ¢ — 1 information, and is
a function of time and past &,’s.

Like all statistical and economic models, ARCH models are at best a rough
approximation to reality: It is too much to hope that the models are “true.” As
we will see, however, we need not think of (1.1)-(1.2) as the true data
generating mechanism in order for ARCH models to be useful in extracting
conditional variances from data. Given an arbitrary sequence {,},_ _.. .., we can
use (1.2) to create a corresponding {0-,2},=_(,‘,’oo sequence: under conditions
developed below, this sequence may provide a good estimate of the true
conditional variance of {£,},_ _., .., even when the model (1.1)-(1.2) is misspeci-
fied. One can think of (1.2) as a filter through which we pass the data to
produce an estimate of the conditional variance. We should note, however, that
we use the term “estimation” as it is used in the filtering literature rather than
as it is used in the statistics literature—i.e., the ARCH model “estimates” the
true conditional variance in the same sense that a Kalman filter estimates
unobserved state variables in a linear system.?

A previous paper, Nelson (1992), gave one likely reason for the empirical
success of ARCH: when both observable variables and conditional variances
change “slowly” relative to the sampling interval (in particular, when the data
generating process is well approximated by a diffusion and the data are
observed at high frequencies) then broad classes of ARCH models—even when
misspecified—provide continuous-record consistent estimates of the conditional
variances. That is, as the observable variables are recorded at finer and finer
intervals, the conditional variance estimates produced by the (misspecified)
ARCH model converge in probability to the true conditional variances.

This paper builds on this earlier work by deriving the asymptotic distribution
of the measurement error. This allows us to approximate the measurement
accuracy of ARCH conditional variance estimates and compare the efficiency
achieved by different ARCH models. We are also able to characterize the
relative importance of different kinds of misspecification; for example, we show
that misspecifying conditional means adds only trivially (at least asymptotically)
to measurement error, while other factors (for example, capturing the “leverage
effect,” accommodating thick tailed residuals, and correctly modelling the
variability of the conditional variance process) are potentially much more
important. Third, we are able to characterize a class of asymptotically optimal
ARCH conditional variance estimates.

In Section 2, we state the basic functional limit theorem we employ through-
out the paper. In Section 3, we use this theorem to develop an asymptotic
approximation for the measurement errors in an ARCH model’s estimate of the
conditional variances when the data are generated by a diffusion. The class of
ARCH models considered is fairly broad, encompassing, for example, the
GARCH(1, 1) model of Bollerslev (1986), the EGARCH model of Nelson

2 See, e.g., the use of the term in Anderson and Moore (1979, Chapter 2), or Arnold (1973,
Chapter 12).
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(1991), and the model of Taylor (1986) and Schwert (1989). Section 4 derives
asymptotically optimal ARCH conditional variance estimates in the diffusion
case. Examples are provided. Section 5 expands the analysis of Sections 3 and 4
to the case when the data are generated by a stochastic difference equation
rather than a stochastic differential equation. Surprisingly, this change makes a
considerable difference in the limit theorems and optimality theory. Section 6
compares the filtering properties of several commonly used ARCH models.
Section 7 concludes. Proofs are gathered in the Appendix. Throughout the
paper, we consider only univariate ARCH models: our results can be extended
to the multivariate case, but at some cost in complexity—see Nelson (1993).

2. OVERVIEW OF CONTINUOUS RECORD ASYMPTOTICS

In examining the properties of the estimated conditional variances produced
by ARCH models, it is very convenient to pass to continuous time: in discrete
time, ARCH models are nonlinear stochastic difference equations, which are
quite intractable. In continuous time, the models become stochastic differential
equations, which are much easier to analyze. Often the nonlinearity vanishes as
continuous time is approached, making the analysis even easier. Most impor-
tantly, we will see that when the movement in the state variables is well
approximated by a diffusion, the difference between the true conditional vari-
ance and the variance estimate produced by a misspecifitd ARCH model
vanishes in the continuous time limit. Continuous record asymptotics allow us to
pin down the rate of convergence and derive the asymptotic distribution of the
measurement error. This would not be possible with the usual large sample
asymptotics, hence our resort to continuous record asymptotics.

The basic techniques we apply were developed by Stroock and Varadhan
(1979) and have previously been applied to the study of ARCH models in
Nelson (1990, 1992) and Nelson and Foster (1991). We refer the reader to these
sources for detailed discussion. The basic intuition underlying the method is as
follows: consider the stochastic integral equation

(2.1) X,=X0+[',L(Xs)ds+f’nl/2(xs) dw,
0 0

where {W} is an n X1 standard Brownian motion, and u(x)€R" and
0'V%(x) € R**" are continuous. For most of this paper we take n = 2, but will
state the results more generally. We take the initial value X|, to be random with
cumulative distribution function F. If the process in (2.1) is well-defined, then
{X,} is a random function of ¢, mapping [0,) into R".> We can think of {X,} as
a random variable taking a value in a function space, the space Dg-[0,®) of right

3 In our notation, curly brackets indicate a stochastic process—e.g., {X, }0 71 is the sample path of
X, as a (random) function of time on the interval 0 <t < T. We refer to values of a process at a
parttcular time ¢ by omitting the curly brackets—e.g., X, is the (random) value taken by the {X,}
process at time 7.
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continuous functions with finite left limits. Dgs[0,) is a complete, separable
metric space when equipped with the Skorohod topology (see Ethier and Kurtz
(1986, Chapter 3)). Under certain regularity conditions, four features uniquely
characterize the distribution of this random function {X,}:

(a) the cumulative distribution F of the starting point X,

(b) the drift function u(x),

(c) the diffusion function 2(x) = Q2(x)2(2(x)/?Y, and

(d) the almost sure continuity of {X,} as a function of ¢.

We next consider for each A >0 a discrete time n X1 Markov process
{,Yi}1 =0, and define for each A >0, each &> 0, and each integer k > 0,

(2.2) Ban(y)= R 2E[(}Yes1 —nYi)lYe =], and
(23) 24 4(y) =h"*4 COV[(hYk+1—hYk)IhYk=y]'

The initial value Y, is random with cumulative distribution function F,.

TaeoreM 2.1 (Stroock-Varadhan): Let (a)-(d) completely characterize the
distribution of the diffusion (2.1),* and let

@) F,(y)— F(y) as h |0 at all continuity points of F.
For some A > 0 and some & > 0, let

() wy 1 (¥) = uly),

() 24 ,(y) > Q(y), and

@) h_AE[”hYk.H "hYk”2+6|hYk =y]-0,
as h |0, where || All=[A'A)Y/?, and where the convergence in (b')—(d’) is uniform
on every bounded y set.> For each h > 0, define the process {, X,} by , X, =,Y|,.,,4
for each t >0, where “[t-h~4) is the integer part of t-h~2. Then for any T,
0<T<ow, {,X}or = {X}or as k10, where (2.1) defines {X,} and “="
denotes weak convergence. Further, if F, sets ,Y, =y, with probability one for all
h, the weak convergence of {,X,} to {X,} is uniform on every bounded {y} set.

Proor: See the Appendix.

(a)—(d') ensure that (a)-(d) are satisfied in the limit by the sequence of
processes {,X,},, o, thereby achieving weak convergence of {,X,} to {X,} as
h|0. ’

4 Formally, we require that the martingale problem associated with F, u, and {2 be well-posed,
or equivalently, that the stochastic integral equation (2.1) have a unique weak-sense solution. See
Ethier and Kurtz (1986, pp. 290-291) or Stroock and Varadhan (1979). Several sets of sufficient
conditions are summarized in Appendix A of Nelson (1990).

I.e., on every set of the form {y: ||yl < C} for some finite, positive C. We could, for example,
write (b’) more formally as

) lim sup [py 4(¥) —u(y)||=0forevery C,0<C <w.
hi0yyi<c
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3. CONTINUOUS RECORD ASYMPTOTICS FOR ARCH FILTERS:
THE DIFFUSION CASE
We now turn to continuous record asymptotics for ARCH models. In this
section we consider the case in which the data are generated in continuous time
by the diffusion

(3.1) d[;:]z “("f’y'*’)]dt

K(xt’ yt7t)
. o(v)’ p(x0 ¥is ) A, ¥, )0 (7))
p(x,,y,,t)A(x,,y,,t)o-(y,) A(x,,y,,t)z
y dWl,t ’
szy,

where {W, ,,W, } is a bivariate standard Brownian motion, x, and y, are
random variables independent of {W1 »W, )}, and [-]'/? is a matrix square root
(i.e., 22 is any matrix satisfying 2'/2(Q2/2Y = (2). We assume that «, u, o, p,
and A are continuous and real valued, that A(-) and o(-) are positive, that
lol <1, and that o(y) is differentiable and strictly increasing in y. We do not
assume stationarity or ergodicity for (3.1), although we do assume that it has a
unique weak-sense solution. None of our results will depend on the choice of
matrix square root in (3.1).

We assume that x, is observable at discrete time intervals of length A. y, is
the unobservable process controlling the instantaneous conditional variance of
x,, namely o-(y,)z. Our interest is in using an ARCH model to create an
estimate §, of y, given the discrete observations (xg, X, X34, - -« X[, /). Our
ARCH filtering theory is asymptotic in that we let 4 approach zero.

For reasons developed below, we also consider a variant of (3.1) in which the
drifts in {x,, y,} explode as 4 | 0:

X /J.(x,,y,,t)
3.1 dl”! h=V4%dt
(.1 [)’1 K(x,,y,,t)}
. (v’ p(x0¥is ) A, yes ) (3:)
p(x, Y, ) A(X,, v, ) (,) A(x,, v, 1)

aw, ,
X .
aw,
Define E,[-] to be the conditional expectation given time ¢ information (i.e.,
given the o-algebra generated by {x_, .} _,.,). We take expectations with
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respect to this information set, rather than with respect to the smaller informa-
tion set observed by the econometrician, the o-algebra generated by
X0> Xps Xops -+ Xppe oy The {x,,y,} process is Markovian, so if f in E[f] de-
pends only on {x_,y.}..,, then E[f]=E[flx,, y,]. We will similarly use sd,[-],
corr,[-], and var,[-] for the conditional standard deviation, correlation, and
variance.

We now define the normalized innovations in x, and y,:

(3.2) §x,t+hEh_1/2[xt+h_xt_Et[xt+h—xt]]’
(3'3) §y,t+hE _1/2[yt+h—yt—Et[yt+h—yt]]'

We consider the class of ARCH models which generate y, (for ¢ an integer
multiple of /) by the recursion

(3'4) §t+h =9t+h "e(xﬂ 9t7t7h) +h1/2.g(£x,t+h7xn ﬁt,t,h),

A

(3'5) gx,t+h = h_l/z[xt+h -x,—h- /l(xn Vist, h)] under (3-1), and

BA)  Pn =9 R/ R(x, 9, 0h) + B2 g(Epx,09,0t,R),

A

3.5 3 =h 2 x, ,—x,—h* 4(x,,9,,t,h under (3.1).
x,t+h h

R(x,, 9,,t,h), g(x,, 9,,t, h), and g(§x,,+h, x,, ¥,,t, h) are functions selected by
the econometrician. K and /i must be continuous in all arguments and g must
be differentiable in y,, £, ,,,, and h almost everywhere and must possess
one-sided derivatives everywhere. Just as u and « are the true drifts in x, and
y,, L and K are the econometrician’s (presumably mlsspec1ﬁed) speaﬁcatlon of
these drifts, and .§X ++n 1s @ residual obtained using 4 in place of u. The ARCH
model (3.4) treats this fitted residual f and fitted § as if they were the true
residual £, and the true y. In ARCH models, the driving noise term in the {y,}
process is a function of the fitted residual in the observable process.
g(fx, x,9,t,h) is the econometrician’s specification of this function. Our chief
interest is in the case in which y, is unobservable, i.e., in which there are no
functions £, K, and g such that g(§x i X Yt ) =€, 1+ almost surely for
all ¢ and h. Nevertheless, the ARCH model treats h'/2-g(£_, x, §,t,h) as if it
were the true innovation in the y, process. When 9, =y,, h'/?g(-) is the noise
term in the increment of y,. Under (3.1), the conditional mean and standard
deviation of the increments in (x,, y,) over intervals of length 4 are O(k) and
O(h'7?), respectively.

The class of ARCH models encompassed by (3.4)-(3.5) is fairly broad,
encompassing, for example, GARCH(1, 1), which sets y =02, R =w — 60, and
g=a-(£2- #?), AR(DEGARCH, which sets y =In(o?), k= —p-[In(5?) -
al, and g=0£f /6 +v[|,. /6| —E,|£ /ol], and the model of Taylor (1986,
Chapter 4) and Schwert (1989), Wthh sets y=o0, RK=w— 06, and g=ad-

(€. /6] — E |, /o).
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We next define g,, the normalized measurement error in y. For ¢ an integer
multiple of 4, we set

(3-6) nth_l/“(?t_yt)'

For general ¢, we take g, =gq, ), making {g,} a random step function with
jumps at time intervals of length 4.

Why use such an ARCH model to extract estimates of the state rather than,
say, a nonlinear Kalman filter? (See, e.g., Kitagawa (1987), Maybeck (1982,
Chapter 13).) First, since ARCH models are so widely used in practice, it seems
reasonable to investigate their properties. Second, ARCH models are much
more computationally tractable than standard nonlinear filters, which are typi-
cally infinite dimensional, and which involve extensive numerical integration
(see, however, the recent work of Jacquier, Polson, and Rossi (1992)). When the
ARCH model is assumed to be the true data generating process, it is easily fit
using maximum-likelihood methods (e.g., Engle (1982)). Finally, we will also see
that the optimal ARCH filters are readily interpretable, and an explicit asymp-
totic distribution theory can be derived for these filters.

We next heuristically motivate the formal assumptions given below. We
assume for the moment that g(fx, x, 9,t,h) is differentiable, though in certain
ARCH models of interest (notably EGARCH and the model of Taylor (1986)
and Schwert (1989)) differentiability fails to hold everywhere, though it is
still possible to verify Assumptions 1-2 in these models. Expanding
g(éx, x, 9,t,h) in a Taylor series around £ =¢, § =y, and 4 = 0, we obtain

(7 &l&iwxi 90t h) =g(£e in %,,¥,,1,0)
+h[08(&x i ins X0 Y0 1,0) /0h]
+(9 =) [08(&c,iin> 15 ¥,,1,0) /Y]
+(£x,t+h _fx,z+h)

: [ag(fx,wh’ X5 y,,t,O)/Bf]
+ higher order terms.

Utilizing the definitions of g, and fx,, +n allows us to rewrite (3.7) as a series
expansion in terms of A, as

(38)  g(é. i X9t h) =8(&c1ins X0, ¥,,1,0)
+h'/%q, - [08(&x, ians %5 ¥i51,0) /Y]
+O(h'/?), and
(38) g€ iim X9t h) =8(&y 1ons X0 ¥, 1,0)
+h'%q, - [08(&, 1ns %15 ¥, 1,0) /3]
+hYE (X, y,51) = (X, 9,, 1, h))
(98 (x> X405 Y15 1,0) /€] + O(R'/?)
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under (3.1) and (3.1') respectively. Substituting into (3.4) and (3.4) and using
(3.6), we have under (3.1) and (3.1)

(39)  an=a,+h"%q,[08(&, 1in X, 9,,1,0) /3Y]
+h1/4[g(§x,t+h7xt’yt’t’o) _§y,t+h] +O0(h**) and
(39)  qn=a,+h"2q, [98(£&, con> *0s 151,0) /0Y]
+hY2[R(x,,y,,t,h) —k(x,,¥,,1)]
+h2 [ w(x,, v,,1) = A(%,5,,1,0)]
(98 (&x,ian> X051, 1,0) /3€]
+h1/4[g(§x,,+h,x,,y,,t,O) —§y,,+h] + O(h*/*) respectively.

We also have

t+h
(3.10) Y¢+h=Y,+E,f K(X5, Y5, 5) ds+h1/2§y,t+h
t
=y, +h-k(x,y,t)+h'?, . +o(h) and
t+h
(311) xH'}l =X +Etj; y’(xs’ ysas) ds +h1/2§x,t+h

=x,th '[.L(x,, Ye» t) +h1/2§x,t+h + O(h)

under (3.1). (Under 3.1), replace the 4 -k and & - u by h3/*k and h3/*u.) Recall
that Theorem 2.1 characterized the limit diffusion using the first two conditional
moments of the state variables—in our case x,, y, and g,. Using the approxima-
tions (3.9)—(3.11) to characterize these conditional moments requires the follow-
ing assumptions:

AssumpTION 1: Uniformly on every bounded (x, y, q,t) set
(3.12) K V?Elq,.p—alx,=x,y,=y,q,=q] 2 A(x,y,t) —q B(x,y,1),
and
(313) A~ '2var[q,.,—qlx,=x,y,=y,4q,=a] > C(x,y,1)
as h |0, where
(3.14) A(x,y,t) =0 under (3.1), and
A(x,y,t) =[R(x,y,t,0) —k(x,y,t)]
+}li£r(1)[,u,(x,y,t) —Aa(x,y,t,h)]

'E[ag(gx,wh’xt’ ynt’h)/afxlxt:xv y,=y]
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under (3.1).
(3.15) B(x,y,t)=-— ’lliiréE[ag(.fx,Hh,x,,y,,t,h)/ay|x, =x, y,=y],

. 2
(3-16) C(x’ y7t) = LI%E[(g(gx,Hh:xt’ y,,t,h) _fy,z+h) X, =X, y,=y].

Further A(x,y,t), B(x,y,t), and C(x, y,t) are twice continuously differentiable
inxandy.

To simplify notation we will often write A4,, B,, and C, for A(x,,y,,t),
B(x,,y,,1), and C(x,,y,,1).

AsSUMPTION 2: For some 6 >0

(317)  E[lh () [

x,=x,y,=y] and

(3.18)  E[|n72(x,0 —x) [ =x, v, =]

are bounded as h |0, uniformly on every bounded (x,y,t) set, and

. N R 2+6
(3.19) llmsupE“g(gx,Hh, X, y,,t,h)’ X,=X,¥,=Y,4,=4
h L0

is bounded uniformly on every bounded (x,y,q,t) set.

These assumptions are written in the most natural form for applying Theorem
2.1. As we will see in Section 4, they can be verified in many applications.

Changing the Time Scales

In 3.1, {x,}, {y,}, and {gq,} are all scaled to be 0,(1), while the first two
conditional moments of x,,,—x, and y,,—y, are Oy h) as hl0. In
(3.12)—(3.13), on the other hand, the first two conditional moments of ¢,., — g,
are O,(h'/?). As h |0, {g,} oscillates much more rapidly than {x,, y,}. If {g,}
mean-reverts (which it will if E [0g(¢, ,,,, x,,y,,1,0)/dy] <0), it does so more
and more rapidly as 4 |0. As we pass from annual observations of x, to
monthly to daily to hourly (and etc.), the rescaled measurement error g, looks
more and more like heteroskedastic white noise (i.e., not like a diffusion).®

To use the Stroock-Varadhan results to approximate the behavior of {q,}
requires that we change the time scales, which Theorem 2.1 allows via our
choice of A. Specifically, we choose a time T, a large positive number M, and a

% The claim that q, mean-reverts ever more quickly as 4 | 0 may seem counterintuitive, since if
we use (3.15) to write g, as an AR(1) process, the autoregressive coefficient is (1 — A/2B(x, y,t))
which approaches 1, not 0, as 4 | 0. Recall, however, that we are considering mean reversion per
unit of calendar time. A unit of calendar time contains 4! jumps in the state variables. So although
the first-order autocorrelation in g, approaches 1 as 4 |0, the autocorrelations at fired calendar
intervals (say daily or monthly) approach 0.
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point in the state space (x, y,q,t), and condition on the event (x;, ys,q;) =
(x,y,q). We then take the vanishingly small time interval [T, T + M - h'/?] on
our old time scale (i.e., calendar time) and stretch it into a time interval [0, M]
on a new, “fast” time scale. Formally, this involves using 4 =1/2 in place of
A =1 in applying Theorem 2.1. On the usual calendar time scale, {x,, y,} are a
diffusion and {q,} is (asymptotically) white noise. On the new “fast” time scale,
the {x,, y,,t} process moves more and more slowly as 4 |0, becoming constant
at the values (x4, y;,T) in the limit as A |0 while {q,} is (asymptotically) a
diffusion. Thus we say that in the limit as /4 |0, {q,} operates on a faster natural
time scale than {x,,y,}. On the new time scale we require two time subscripts
for the {q,} process, one giving the time T on the standard time scale and one
giving the time elapsed since T on the “fast” time scale. We therefore write

(320) qT,T =d7+n'72s

where the 7 is the time index on the fast time scale. (g, . also depends on the
time T startup point (x, y, g, t), though we suppress this in the notation.) Our
analysis of the measurement error process is therefore local in character: in a
sense it treats the more slowly varying {x,,y,, ¢} as constant at the values
(x4, y7,T) and examines the behavior of the measurement error in the neigh-
borhood of (x, y,, T).

Figure 1 illustrates this changing of the time scales with artificially generated
data. The upper-left panel plots a simulated {y},_o , 24 34... series from a
diffusion model and the corresponding {J,} generated by an EGARCH model
based on monthly observations of the observable {x,},_ s 5 34... series.” Time
is measured in annual units so A=1/12. In the lower-left panel the
{yh—o.n.2n3n...and {P},_q 1 24 3,... based on daily observations (h = 1,/264) are
plotted. The measurement error {$, —y,} is smaller for daily than for monthly
data (the empirical variances in the simulation are .144 and 1.230 respectively)
and is also less autocorrelated at fixed lags of calendar time (e.g., the autocorre-
lation at a 1 month lag is .219 with daily observations and .477 with monthly
observations). We allow for the shrinking variance with the A~!/% term in the
definition of g,. The time deformation allows us to handle the changing serial
correlation: for example, set M =122 T=20, and T+M-h'/?=21 for
monthly data and call these =0 and 7 =M on the “fast” time scale. As the
left-hand panels indicate, the interval of calendar time between 7 =0 and
7 =M shrinks with 4, from one year with monthly data to about 21 months with
daily data. The right-hand panels plot the corresponding g,,, processes. The
diffusion approximation we derive is for gq,, . as h | 0.

" We used the Wiggins (1987) model, (4.20)-(4.22) below. The model was simulated using the
Euler stochastic difference equation approximation with daily increments. We assumed 22 (trading)
days per month. The parameter values used were u =0, A =2.1, a = —3.9, B =825, p = —.69,
y = In(c,2). The EGARCH models estimated were the asymptotically optimal EGARCH models for
this diffusion—see Section 6 below.
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Making this change of time scale, and conditioning on (x4, y7,q7 ¢, T) it is
straightforward to derive the limit diffusion of {g .}, o

(321) dqr,=(Ar—Brar,)dr+Cy/?dW,,

where W, is a standard Brownian motion (on the “fast” time scale). Since the
distributions of ¢, ., and §, ;. are functions of y;, x, T, and h, By and Cy
are functions only of y;, x;, and T, and are constant (conditional on y,, x,
and T) in the diffusion limit on the fast time scale. On the fast time scale, {qr,f}
follows an Ornstein-Uhlenbeck process, the continuous time equivalent of a
Gaussian AR(1) (see, e.g., Arnold (1973, Section 8.3) or Karatzas and Shreve
(1988, p. 358)).

THEOREM 3.1: Let Assumptions 1-2 be satisfied. Let © be any bounded, open
subset of R* on which for some ¢ >0 and all (x,y,q,T) €0, |A(x,y,T)| <1/,
e<B(x,y,T)<1/e, and C(x,y,T)<1/e. Then for every (x,y,q,T)€ 6,
{ar, Y0, my (conditional on (x1,yr,q7) = (x,y,q)) converges weakly to the diffu-
sion (3.21) as h |0. This convergence is uniform on @. Further, for every
x5 Y707,T)EO,

(3.22) [qT,Ml(xT’yT’qT,O) = (x,y,q)]
d
- N[AT/BT"""M.BT(‘I —Az/Br),
Cr(1 _e_ZM‘BT)/ZBT]’

g o
where — denotes convergence in distribution as h | 0.

Proor: See the Appendix.

Interpretation

If B;> 0, then for large M (recall that we can make M as large as we like as
long as it is finite), ;. ,, given x; and yr, is approximately N[ A,/By,Cr/2B;].

Though lim,, _ lim, (g7 (X7, y7,q7.0) = (x,y,9)] 2 N(Ay/By,Cr/2By),
Theorem 2.1 does not allow us to interchange the limits. By the properties of
limits, however (see Lemma 5.2 of Helland (1982)) we can say that if M(h) — o
slowly enough as k|0, then gy ) => N(Ayp/By,Cr/2By) as h |0, formally
justifying the N(A,/B;,Cr/2B;) as a large M asymptotic distribution, allow-
ing us to abstract from the initial condition g7 .

At this point, four comments are in order:

First, under the conditions of Theorem 3.1, [§, —y,] is O,(h'/*). Although
this rate of convergence (O,(h'/*)) is the same throughout the state space
(whenever the conditions of the theorem are satisfied), the asymptotic variance
of the measurement error is a function of B and C; and therefore of x, y;,
and T. The O,(h'/*) rate seems fairly slow, implying, for example, that in going
from annual to daily returns data the standard deviation of the measurement
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error falls by about a factor of four. If the variance per unit of time were
constant, we could achieve an Op(hl/ 2) rate of convergence (see, e.g., Merton
(1980)), and the standard deviation of the measurement error would fall by a
factor of 16. Our slower convergence rate results from the fact that the ARCH
variance estimators are shooting at a rapidly oscillating target.

Second, Theorem 3.1 analyzes the local behavior of {g; ,} in the neighbor-
hood of the time T state values (x, ¥z, g7)- This analysis may not be particu-
larly useful if g, explodes as h |0, ie., if [§;—y] converges to zero at a rate
slower than A'7%. A technical device gets us around this problem: in related
work (Foster and Nelson (1993)), we show that under mild regularity conditions,
rolling regression estimators achieve the OP(hl/ 4) convergence rate for
[0($,)* — o(y,)?] and consequently for  —y,. A rolling regression at the
beginning of a sample—say from dates T — h'/? to T—can be used to initialize
the ARCH filter at time 7.2

Third, Theorem 3.1 also allows us to characterize the asymptotic autocorrela-
tion: using the autocorrelation function of the Ornstein-Uhlenbeck process (see
Arnold (1973, Section 8.3)) we have for small 4 and large positive 7 and 7’

(3.23) oIt (Gryrpi/2s Ap i) =exp[— |7 —7'| - Br].

According to (3.23), {g,} is asymptotically white noise on the standard (calen-
dar, slow) time scale, since the (asymptotic) serial correlation in the measure-
ment errors vanishes except at lag lengths shrinking to zero at rate O(h'/?). 1t is
conditionally heteroskedastic white noise, however, since the asymptotic vari-
ance of g, depends on x,, y,, and ¢.

Fourth, under (3.1), the asymptotic distribution of the measurement error
process {g,} depends on p(-), a(-), A(-), and g(-), but not on &, «, u, or 4.
While errors in the drift terms K, k, u, or i affect {g,} for fixed h > 0, they are
asymptotically negligible as 4 |0. (3.1) is in a sense more natural than (3.1)
since it analyzes a particular diffusion while varying the sampling interval h. If
the drift terms K, «, u, and [ are large, however, asymptotics based on 3.1
may ignore an important source of measurement error. (3.1') blows up these
drift terms at an appropriate rate to keep them from dropping out of the
asymptotic distribution. This is analogous to the use of “near-integrated”
processes in the analysis of unit root asymptotics (see, e.g., Phillips (1988)). In
this “large drift” asymptotic, nonzero [k — k] and [p — 1] create an asymptotic
bias in g, = h~'/*[§ — y], but do not affect its asymptotic variance. This confirms
the intuition given in Nelson (1992) that seriously misspecified ARCH models
may consistently extract conditional variances from data observed at higher and
higher frequencies—i.e., consistency is not incompatible with (moderately)
explosive (as A | 0) misspecification in the drifts.

8 Formally, to guarantee that g, = O,,(hl/“) for all ¢, choose a large positive N and define y; by
$r=9(ARCH) whenever |6}(ARCH) — 62(Rolling Regression)| <h'/*N, and §r= % (Rolling
Regression) otherwise.
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To gauge the size of the bias, note that blowing up [£ — k] and [ — 4] at an
h~'/% rate introduced an O(h'/*) bias in the measurement error [ 5 -yl
suggesting that the effect of non-exploding drifts introduces an O(k!'/?) bias.

4. ASYMPTOTIC OPTIMALITY

In discussing optimal ARCH model selection, several warnings are in order:

First, we consider optimality only within the class of ARCH models given by
(3.4)-(3.5) and subject to the regularity conditions in the Assumptions.

Second, we evaluate optimality in terms of the “large M” asymptotic bias
A7/Br and asymptotic variance C;/2B;. As is well-known in standard large-
sample asymptotics, minimizing asymptotic variance need not be the same as
minimizing the limit of the variances.

Third, much the same difficulty arises in defining globally optimal ARCH
filters as arises in defining globally optimal estimators in statistics: just as the
“optimal” estimate of a parameter ¥ is ¥ itself, the “optimal” ARCH model
when (y;, x;,T) =(y, x,t) is the model in which Vr.. is held constant at y.
Even if y, is randomly changing, the estimation error would be Op(hA) (note the
faster rate of convergence when 4 >1/4) in an O(h*) neighborhood of y, =y.
Obviously, in other regions of the state space such an estimate would perform
disastrously. We call the ARCH model globally optimal if it eliminates the large
M asymptotic bias A;/B;—even in the “fast drift” case—and minimizes the
large M asymptotic variance C;/2B; for every (x, y,t). Hence our optimality
concept is patterned on the UMVAE (uniform minimum variance unbiased
estimator) criterion.

Eliminating Asymptotic Bias

From (3.14) and Theorem 3.1, it is clear that asymptotic bias Ar/By can be
eliminated by setting k(x, y,t,h) = k(x, y,t) and fi(x, y,t, h) = u(x, y, t) for all
(x, y,t). Though this choice of K(x,y,t,h) and A(x,y,t, h) is sufficient to
eliminate asymptotic bias, it is not necessary, since bias from ulx,y, t,h)+
p(x, y,t) may exactly offset bias from R(x, y, ¢, h) # k(x, y, t).

Minimizing Asymptotic Variance

Suppose that the conditional density of &, r,,, say f(¢&, 7, ,lxp, yp), is
well-defined and is differentiable in y. Integrating by parts then allows us to
write By as

(4.1)  B;

lltij,n(l) —ET[ag(fx,T+h7xT’ yT’T’h)/ay]

’lliff(l)ET[g(gx,T+h7 Xr5 yT9T’h)

-d1n [f(gx‘T*_hle’ yT’T’h)]/ay] :

Under (3.1) or (3.1') the increments in {x,,, —x,,y,,, —¥,} approach condi-
tional normality as 4 | 0 (see, e.g., Stroock and Varadhan (1979, pp. 2-4)), and
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(& 0om €, 01n) is approximately (conditionally) bivariate normal with mean 0
and variances o(y)?> and A(x,,y,,t)’, and correlation p(x,,y,t). If
f& rinlxr, vy, T), 8(£,, x,y,t), and their partial derivatives with respect to y
are sufficiently well-behaved, the following will hold: define

(4.2) [;] N

[o] o(y) p(x,y,t)A(x,y,t)o(y)
01" p(x, y, ) A(x, y,)o(¥) A(x,y,t)? '

Then
(43)  B(x,y,t)=0(y) ’o'(y)E[e2g(e,,x,y,t,0)], and
(44)  C(x,y,1) =E[(8(c.r 1, 3,1,0) =&,

Equations (4.2)-(4.4) turn out to be important technical conditions in deriving
the asymptotic variance minimizer, as does a stronger version of (3.18):

AssumpTioN 3: For every (x,y,t), (4.2)—(4.4) hold, and for some & > 0,

(4.5) limsupE[lh"«”(x,+h—x,)|4+6
hi0

X, =X, y1=y

is uniformly bounded on every bounded (x,y,t) set.

The conditional density of £, ,,, can, in principle, be derived from the
Kolmogorov backward or forward equations (see, e.g., Stroock and Varadhan
(1979, Chapters 2-3, 9-10)). In practice, it is easier to check (4.2)-(4.5) directly
than to establish convergence for the derivatives of the conditional density.

THEOREM 4.1: Let Assumptions 1-3 hold. Under either (3.1) or (3.1), the
asymptotic variance Cy/2 B is minimized by setting

p(x’y’t)A(x’y’t)gx]

(4.6) g(é.,x,y,t,h) =

o(y)
1/2
A(x,y,0[1=p(x,,)7] €
2172 o(y)2 :
This yields
[1=pCeryr Y] A7 v, T)o(3r)
CT/ZBT= T> YT T> YT T

[21/20./(yT)] ’

and the corresponding asymptotic variance of h™'/*[a($)* — o(y)?*] equals [1 —
p(xT’ y’[‘a T)Z]I/ZA(XT, yT, T)o.(yT)Ba-l(yT)Sl/z'
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Proor: See Appendix.

Sometimes it is of interest to minimize C;/2B; within a particular class of
ARCH models (e.g., to find the optimal GARCH(1, 1) model). Accordingly, we
consider models in which

47)  g(é,x,y,t,h)=a(x,y,t,h) g*(&,,x,y,t,h), where
(4'8) Et[g*(gx,wh’xt’ ynt’h)] =0, Vart[g*(fx,wh’xt’yt’t’h)] =1,
and
Et[ag*(gx,(+h’xta ynt’o)/ay] <0~

We now treat g*(-) as given and optimize over a(-).

THEOREM 4.2: The asymptotic variance Cr/2B is minimized subject to the
constraints (4.7)-(4.8) by setting
(49)  a(x,y,t,h)=A(x,y,1).
The minimized C;/2Br equals

O'(yT)3[A(xT7 yr,T) —covy [§t,T+h7g*(§x,T+h’xT7 yT’T’O)]]

(4.10)

0"(YT)ET[§3,7+hg*(§x,T+h’xT’YT’T’O)] ’
and.the corresponding asymptotic variance of h™'/*[a($;)? — a(y)?] is
’ 5
40'(yr)o(yr)

[A(xT’yT7T) COVT[fy r4n> 8 (§x.7em> X1 Y75 T O)”
Er[fx T+h& (‘fx r+m X7 Y15 T 0)]

Proor: See Appendix.

Interpretations

Since {x,,y,} is generated by a diffusion, the increments x,, ,—x, and
Y,+n — ¥, are approximately conditionally normal for small A. The first term in
4.6), p(x,y,0A(x,y,0)¢,/0(y) is El¢, , hlé,  in> X, y,] using the (limiting)
conditionally normal distribution. Given the information in &, ,,,, (4.6) opti-
mally forecasts the innovation in y,,,, h'/%¢, .

To understand the second term in (4.6), consider y, as an unknown parame-
ter in the conditional distribution of ¢, ,,,. Given y,, &, ,,, is approximately
N[0, o(y,)*]. We may write the (limiting) loglikelihood as

(4'11) ln(f(fx,t+h|yt)) =—-.5" ln(27r) —In [O'(y,)] -5 'ff,wh/a'(yt)z’

so the score is

aln(f(fx,t+h|x“ yn y)) - [ ‘fxz,t+h _ 1} U,(yt)
dy a(y)’  |e(y)

(4.12)
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For a given x, y, and ¢, the second term on the right hand side of (4.6) is
proportional to the score. As in maximum likelihood estimation, ¥y, is moved up
when the score is positive and is moved down when the score is negative.’

Consider the problem of predicting y,,, given x,,x,_,, x,_,,,... . There are
two sources of uncertainty about y,,,: first, uncertainty about y,, , —y,, ie.,
uncertainty about changes in y,. Second, there is uncertainty about the level of
y,. These two sources are asymptotically of the same order, OP(h'/ 4). The first
term on the right side of (4.6) optimally extracts information about y,,, —y,
contained in x,,, —x,. The second term, in a manner analogous to maximum
likelihood estimation, extracts information about y, itself.

Conditional Moment Matching and the Connection with Consistent
Forecasting

Nelson and Foster (1991) develop conditions under which the forecasts
generated by a misspecified ARCH model approach the forecasts generated by
the true model as a continuous time limit is approached. For example, suppose
the diffusion (3.1)-(3.3) generates the data and the misspecified ARCH model
(3.4)-(3.5) is used to estimate y, and to make probabilistic forecasts about the
future path of {x,,y}. In particular, suppose the ARCH model is used in
forecasting as if it were the true model—i.e., as if, instead of (3.1), we had

(4.13)  x,u=x,+h-2(x,y,t,h)+h"* & 0,

(4'14) Yien =Y th -:?(x,,y,,t,h) +h1/2'g(‘fx,t+h’xt’ ywt’h)’

where £, ,.,1x,,¥,t~NI[0,0(y,)’]. Under what circumstances do forecasts
generated by this misspecified model approach forecasts generated by (3.1)-(3.3)
as h | 0? It turns out that these conditions are closely related to the conditions
for asymptotically efficient filtering. In particular, the conditions for consistent
forecasting include the first-moment-matching requirement that K(x, y, ¢, h) =
k(x,y,t) and f(x, y,t,h) =pu(x, y,t) for all (x,y,t). As we saw earlier, this is
sufficient condition to eliminate asymptotic bias in the “large drift” case. We
also require that the second moments are matched in the limit as 4 |0—i.e.,
that

£, &
(415) cov’[fy]_covt [g(fx,x,y,t,o)]

2
a(y) p(x,y,t)A(x,y,t)o(y)
5 .
p(x,y,t)A(x,y,t)a(y) A(x,y,t)
° This is merely heuristic: convergence in distribution of [§X,§y] does not, of course, imply

convergence of the conditional density or of its derivative, and we do not need to prove such
convergence to verify Assumptions 1-3.
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Using the approximate bivariate normality of ¢, and ¢, it is easy to show that
the asymptotically optimal g(-) of Theorem 4.1 satlsﬁes (4.15).

What accounts for this moment matching property of optimal ARCH filters?
Recall that the first two conditional moments of {x,, y,} (along with properties
(a) and (d) of Section 2) characterize the distribution of the process. Optimal
ARCH filters make themselves as much like the true data generating process as
possible. Since the first two conditional moments characterize the true data
generating process in the continuous time limit, the optimal ARCH filters
match these two moments. (This ignores the pathological case when biases
arising from K # k and from i # u exactly cancel.)

Interestingly, misspecification in the drifts k and w has only a second-order
(O,(h'/?) as opposed to 0,(h'/*)) effect on filtering (and hence on one-step
ahead forecasting) but has an Op(l) effect on many-step-ahead forecasting
performance. Over short time intervals, diffusions act like driftless Brownian
motions, with the noise swamping the drift. In the medium and long-term,
however, the drift exerts a crucial impact on the process.

Invariance to the Definition of y,

There is considerable arbitrariness in our definition of y,. Suppose, for
example, that we define §,=j(y,) and o7 =0(y,)?>=0(57(5,))? for some
monotone increasing, twice continuously differentiable function y(-). We could
then apply Ito’s Lemma to (3.1), rewriting it as a stochastic integral equation in
x, and y,. If the regularity conditions of Theorem 4.1 are satisfied, the Theorem
ylelds an asymptotically optlmal filter producmg an estimate, say y,”, of y, and
a corresponding estimate of 0%, say 6,” % = o(5 (3, ))2 for the new system. Is
it possible to make the asymptotic variance of [a 2— 0] lower than the
asymptotic variance of [6>— 2] by a judicious choice of F(-)? Using Ito’s
Lemma it is easy to verify that the answer is no, provided that the regularity
conditions are satisfied for both the (x,, y,) and (x,, 7,) systems: the ¢’(y) in the
asymptotic variance of [6? — ¢2] in Theorem 4.1 is replaced by
a'(y)/[85(y,)/dy] in the § system, but the A(x, y,?) is replaced by A(x, y, t)-
[05(y,)/dy], leaving the asymptotic variances of [6;>— ] and [6,~%—0c?]
equal. Within the limits of the regularity conditions, the definition of y, is
arbitrary.

Examples

The asymptotically optimal ARCH filter of Theorem 4.1 looks unlike ARCH
models commonly used in the literature. GARCH(1, 1) is an exception. Suppose
the data are generated by the diffusion

(4.16) dx,=p-dt+o,dW,,,
(417) do?= (0~ 00,2) dt +2'%ac? dW, ,,
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where WI, and W, , are independent standard Brownian motions. If we set

y, =2, this is in the form of (3.1). The asymptotically optimal filter of Theorem
4.1 sets A =p and
(4.18)  6%,=6+(w—062) h+ha(é2,,, - 67),

which is recognizable as a GARCH(1, 1) when we rewrite (4.18) as
(419) Gi,=w0-h+(1—0-h—a-h'/?)6, +h1/2a§x (+h-

ThEOREM 4.3: (4.16)—(4.18) satisfy the conditions of Theorems 3.1 and 4.1.
Proor: See Appendix.

If dW, ,dW, ,=pdt, p#0(i.e.,if W, and W, , are correlated) GARCH(I, 1)
is no longer optimal: the second moment matching condition (4.15) fails, since
corr, [a(£] ,,, —0), &, ,,4] is zero, not p. A modification of GARCH(1, 1)
(“Nonlmear Asymmetric GARCH”) proposed by Engle and Ng (1993, Table 1)
can be shown to be optimal in this case.

To further illustrate the construction of globally optimal ARCH models, we
next consider two models from the option pricing literature. In each model, S,
is a stock price and o, is its instantaneous returns volatility. We observe {S,} at
discrete intervals of length 4. In each model, we have

(4.20)  dS,=pS, dt +S,0,dW, ,.

The first model (see Wiggins (1987), Hull and White (1987), Melino and
Turnbull (1990), and Scott (1987)) sets

(421) d[in(0?)] = -B[In(0?) —a] dt +y -aw, ,,

where W, , and W, , are standard Brownian motions independent of (S, o2)
with

aw, 1
(4.22) [dW;:][dWI,, sz,,]=[p ‘l’]dt.

w, ¥, B, « and p are constants.

Bates and Pennacchi (1990), Gennotte and Marsh (1993), and Heston (1993)
propose a model which replaces (4.21) with
(423) do?=-Blo?—aldt+y-a,-dW,,.
Here o2 is generated by the “square root” diffusion popularized as a model of
the short-term interest rate by Cox, Ingersoll, and Ross (1985).

Now consider ARCH filtering of these models. Suppose we define x,=In(S,)
and y, =In(0,>). We may then rewrite (4.20)—(4.21) as
(4.20") dx,=(pn —exp(y,)/2)dt +exp(y,/2)dw, ,,

(421) dy,= —Bly,—aldt+¢ -dW, ,.
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THEOREM 4.4: The asymptotically optimal ARCH model for the model
(4.20)-(4.217) and (4.22) is

(424)  (x.9) =p —exp(9)/2
(4.25) §t+h=§t—3[ﬁt—a] “h
12k, - exp (=9,/2) + [(1-0) /2]
'(éxz,wh ’ exP( _91) - 1)] :

(4.20')-(4.217) and (4.24)—(4.25) satisfy Assumptions 1-3. The resulting (mini-
mized) asymptotic variance of h™" o ($)* — a(y)*1is [2(1 — p®)]'*yo’.

1/2

Proor: See Appendix.

Next consider the model given by (4.20) and (4.22)-(4.23). Using Ito’s Lemma
and y = In(c2), (4.23) becomes

(423) dy,=(-B+exp(—y)|[Ba—¢?/2])dt+y-exp(—y,/2) -dW,,.
The asymptotically optimal filter suggested by Theorem 4.1 is
(4.26) $,.n=9,+(—B+exp(—9,)[Ba—v2/2])-h+h"yexp(-3,/2)
o ien-exp(=5,/2) + [(1-p) /2]
(&2 e (-5,) — 1)].

Unfortunately, the regularity conditions break down at y = — (i.e., at o2 = 0).
(In fact, the stochastic differential equation (4.23') is not well-defined in this
case, although (4.23) is.) This is not a problem in the theorem as long as the
boundary y, = — is unattainable in finite time. When 2B« < 2, however, this
boundary is attained in finite time with positive probability (see Cox, Ingersoll,
and Ross (1985)). We therefore exclude this case.

THeoREM 4.5: Let 2Ba > 2. The asymptotically optimal model for (4.20")
and (4.22')—(4.23') is given by (4.24) and (4.26). Equations (4.20'), (4.22'), (4.23),
and (4.26) satisfy Assumptions 1-3. The resulting (minimized) asymptotic vari-
ance of h™ ' [o($)? — o(y)?1is [2(1 — pD)]'*¢o3.

Proor: See Appendix.

The differences in the optimal filters for the two models are most easily
understood in terms of the moment matching conditions: In (4.21) and its
associated optimal ARCH model, the conditional variance of o,* rises linearly
with o, while in (4.23) the conditional variance of o, rises linearly with o> As

we will see in Section 6, most commonly-used ARCH models effectively assume
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that the “variance of the variance” rises linearly with o,*. If (4.23) generates the
data, GARCH, EGARCH, and other such models will be very inefficient filters
when o? is very low or very high, since the g(-) functions in these ARCH
models cannot match the ARCH and true ‘“variance of the variance” every-
where in the state space.

5. NEAR DIFFUSIONS

In this section we consider the case in which the data are generated in
discrete time by the stochastic volatility model

(51) _x,+h- _ _x,- + -M(xt’ ytitih)-h+ [fx,t+h]

[ Yewn | | Vi ] k(X y,,t,h) &y ton

or, in the “fast drift” case analogous to (3.1)
—x,+h- —x,- ;,L(x,,y,,t,h)

5.1 = + h* +
( ) _yt+h_ _yt_ K(xt;yt’t’h) [

‘fx,t+h]

gy,t+h

for some (small) & > 0, where

§x t+h- ‘0
5.2 E ’ =
( ) ¢ fy,t-f—h_ _O:I,
cov [fx,m,]_ ()’ P(X0 Y0 ) A(X,5 9,5 1) 0 (,)
, =
§y‘t+h p(xt’yt’t)A(xt’yt’t)U(yt) A(xt’yt’t)z

We assume further that the process {x,, y,},_ ;. 2,... is Markovian. Again, in
(5.1)-(5.2), “¢” is assumed to be a discrete multiple of 4. To define the process
for general ¢, set (x,, y,) = (X, 4} Ve ) This makes each {x,, y,} process a
step function with jumps at discrete intervals of length A. “E,” and “cov,”
denote, respectively, expectation and covariances conditional on time ¢ informa-
tion—i.e., the o-algebra generated by {x_,y.}o.,, or, equivalently for our
purposes, by (x,, y,, J,,t). Note that the structure of the first two conditional
moments of x, and y, in (5.1)-(5.2) are the same as in (3.1)-(3.2). In fact, under
(5.1) and the regularity conditions assumed below, {x,, y,} converges weakly to
the diffusion (3.1)-(3.2) as A | 0. We therefore call such a {x,, y,} processes a
near diffusion.

Why the Near Diffusion Case is Important

At first glance, it would seem that there is little gain to generalizing the
results of Section 3 to the near diffusion case. The intuition is this: the
estimated conditional variance process {o($,)?} is a functional of the sample
path of the {x,} of (5.1)-(5.2). The {x,} of (5.1)-(5.2) converges weakly to the
{x,} of (3.1)-(3.2) as 4 | 0. If the mapping from {x,} to {o($,)?} is sufficiently
well-behaved, the continuous mapping theorem should guarantee that {o($,)?}
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converges to the limit derived in Section 3 as 4 | 0, yielding the same results on
efficiency and etc. as in the diffusion case.

Unfortunately, this intuition is wrong, since the mapping from {x } to {a($,)*}
is not at all well behaved in the sense required by the continuous mapping
theorem. To see why, consider the case of iid residuals. Let

(5'3) xt+h:xt+hl/2§t+h

where x,=0 and for all ¢ and all &, ¢, is iid with mean 0 and variance o2
Consider the least squares estimator of o2, given at time ¢ + 4 by

t/h t/h
(5.4) &ihz(t/h)_l > h_l[x(j+1)h_xjh]zz(t/h)_l ) sz_
j=0,h,2h... j=0,h,2h...

Standard invariance arguments (e.g., using Donsker’s theorem: see Jacod and
Shiryaev (1987)) show that as 4 |0, {x,} converges weakly to the limit process
given by

(5.5) x,=oW,,,

where W, , is a standard Brownian motion. This holds regardless of the distribu-
tion of &, provided ¢, is iid with mean 0 and variance o*. If E[£}]< w,
{(t/n)'7*(62, ), — o)} also converges weakly, to the process {,} with

v, =0(E[¢}/0?] - 1)"w,,,

where W, , is a second standard Brownian motion. Note that the diffusion limit
of {x,} does not depend on the distribution of &,/o, but the diffusion limit of {i,}
does, through the kurtosis of ¢,.

Suppose, for example, that {x,} is a Brownian motion observed at time
intervals of length 4, so & ~ N(0,0?). Here (E[¢}/0*] — 1) =2. (This is the
case analogous to (3.1)-(3.2).) Moving from the diffusion to the near diffusion
case by changing the distribution of £, can have drastic consequences for d,. For
example, let £, be iid Student’s ¢ with v > 4 degrees of freedom and variance
o?. Then well-behaved diffusion limits exist for both {x,} and {y}. E[¢}/a?],
however, is a decreasing function of v, so while the diffusion limit of {x,} does
not depend on v, the limit of {i,} does. In particular, the efficiency of 67 as an
estimate of o2 is an increasing function of the degrees of freedom v. Even in
this iid case, there is a crucial difference between the behavior of the variance
estimate for the limit diffusion and the variance estimate for a sequence of
process converging to the diffusion. As we will see below, this remains true in
the more general ARCH case as well.!?

Many empirical studies of asset market volatility have found that returns
remain somewhat thick tailed even after conditional heteroskedasticity is ac-

1 Here is another heuristic: for Brownian motions, the instantaneous variance is the stochastic
derivative of the quadratic variation of the process. Since Brownian motions are continuous with
probability one, the Weierstrass theorem guarantees that they can be approximated to arbitrary
accuracy with finite-order polynomials. Yet the quadratic variation of any polynomial is zero.
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counted for (e.g., Baillie and Bollerslev (1989), Nelson (1989, 1991)). Near
diffusions easily accommodate this. The diffusion case examined in Section 3, on
the other hand, effectively assumes conditional normality for sufficiently small
h. The near diffusion case is therefore likely to be practically important, and will
allow us to consider optimality for different conditional distributions and the
robustness of different ARCH models to the presence of conditionally thick
tailed residuals.

Main Results

THEOREM 5.1: Let Assumptions 1-2 hold with (5.1) and (5.1) replacing (3.1)
and (3.1). Then the statement of Theorem 3.1 holds.

Proor: See Appendix.

The interpretation of the optimal filter in terms of an estimation component
and a forecasting component applies in the near diffusion context also. We
accordingly define the prediction component

(56)  P(£,x,y,t,h)=E[£, ,u|(&e ion X0 Vir 1 h) = (0%, 9,8, 1)),
and the estimation (or score) component
(5.7)  S(&,x,v,6,h)=aIn[f(& .lx,y,t,h)] /3y,

where f(¢,,,,|x,y,t,h) is the conditional density of ¢, ,,, given (x,,y,)=
(x, y). In the diffusion case of Sections 3 and 4, P(-) is proportional to £, and
S(-) is proportional to ¢2— o2 This is not generally true in the near diffusion
case unless ¢, and ¢, are conditionally bivariate normal.

AssuMPTION 4: For every (x, y,t, h), the conditional densities f(¢,,£,|x, y,t, h)
and f(¢,|x, y, t, h) are well-defined and continuous in x, t, and h and f(¢ ,|x, y,t, h)
is continuously differentiable in y. Further, for some 6 > 0,

(58) h_lE[|P(§x,t+h’xt’yt’t’h)]

(5‘9) h_lE[ls(‘fx,t+h7xt’ y,,t,h)|2+8|x,=x, yt=y]

are bounded as h )0, uniformly on every bounded (x,y,t) set.

2+6

X, =X,Y, =y] and

THEOREM 5.2: C; /2By is minimized by setting
(5.10) g(¢&,,x,y,t,h)=P(&,x,y,t) to(x,y,t)-S(&.,x,y,t), where
(5.11) w(x,y,t)

[cov, (S,P)* + (A? —var, (P)) - var, (S)] v cov, (P, S)
- var, (S) ’
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(The arguments have been dropped in (5.11) to simplify notation.) The asymptotic
variance achieved by any other g(-) function (say g) satisfying the constraints
E,[g]=0 and B;> 0 is strictly higher unless g(¢,, x, y,t,0)=g(£,, x,y,t,0) with
probability one.

The minimized C;/2B;= w(x1,ys,T), and the corresponding asymptotic vari-
ance of h™*o(9)* — a(y)?] equals 4 - w(x1,y;,T) o(y;) Lo’ (y, )2

Proor: See Appendix.

THEOREM 5.3: The asymptotic variance C;/2By is minimized subject to the
constraints (4.7)—(4.8) by setting

(5.12) a(x,y,t,h)=A(x,y,t).

The minimized Cr/2By is All —corry (¢, 8*)/E[g* - S], and the asymptotic
variance of h=V*[a($)? — o(y)?] is 40%0"*Al1 — corr, (&,,8"N/E/lg*-S].

Proor: See Appendix.

The interpretations of the optimal filter given in Section 4—i.e., moment
matching, asymptotic irrelevance of transformations y(y,), and the prediction
and estimation components of the optimal filter—continue to hold. To further
understand the distinction between prediction component P(¢,, x, y,t) and the
estimation component S(¢,, x, y,t), consider first the case in which an ARCH
model is the true data generating process—i.e., in which the innovation in the y
process, £, is a function of the innovation in x, ¢, and possibly the other state
variables x, y, and ¢, say £, =g(&,,x,y,t). Now ¢, =P(-), and w(-)=0. The
innovations in y, are observable, so it is not surprising that the asymptotic
variance of the measurement error is zero.

Another polar case arises when P(-) =0 with probability one, so £, contains
no information that helps predict £,. This was true, for example, in (4.16)-(4.17),
when the x, and y, were driven by independent Brownian motions. In this case,
the asymptotic variance is A/sd,(S). This is easily interpretable: A is the
conditional standard deviation of y,—the more locally variable y, is, the less
accurately it can be estimated. Var,(S), on the other hand, is the filtering
analogue of the Fisher information—the smaller the Fisher information, the
higher the asymptotic variance of the parameter estimates.

6. ANALYSIS OF SOME COMMONLY USED ARCH MODELS

GARCH(1,1)

In the GARCH(1, 1) model of Bollerslev (1986), we have y =02, K =w — 002,
and g=a-[£2—0?]. As we saw in Section 4, GARCH(1, 1) is asymptotically
optimal for the diffusion (4.16)-(4.17). More generally, suppose the data are
generated by either (3.1), (3.1), (5.1)-(5.2), or (5.1)—(5.2) with y=¢2 By
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Theorem 5.2, GARCH(l 1) is optlmal when for some aandall ¢, x, 0%, and ¢,
k(x,0%t)=w—00? and P({,x,0%1)+w(x,0%,1)S(&, 0% 1) =al£? - o2,
When GARCH(I, 1) is the true data generating process, the GARCH(1, 1) filter
is (trivially) optimal and P(¢,, x,02,t) = a[£2 — 0%] while w(x, 02, 1) = 0. Even
when P(¢,,0%,t)=0, GARCH may be optimal provided ¢, is conditionally
normal.

Next consider minimizing C,/2 B, with a model of the form

(6.1) g=a(x,0%1) (& -0?).

By Theorems 4.2 and 5.3, the optimal a(x,o?t) equals A(x,a?,¢t)/sd (£2).
Suppose the conditional kurtosis of ¢, is a constant K (this is always satisfied in
the diffusion case, where K =3, and is satisfied in many discrete stochastic
volatility models as well). We may then write the (constrained) optimal g as

(62) g=A(x,0%t)0 2 (K—1)""%-(£2-0?).

GARCH(1, 1) further constrains « to be constant, so clearly if GARCH(1, 1) is
to be the constrained optimum in the class of models (6.1), A2, the conditional
variance of o2, must be proportional to o*. (Or, equivalently, the conditional
variance of In(o?) is constant.) As we will see, many other commonly used
ARCH models effectively make the same assumption. The resulting (locally)
minimized asymptotic variance of A~ /4[¢2 — o] is

(6.3)  sd,(£2/0?%) |1 —corr, (£2,¢,)| - a?
y

That is, GARCH(1,1) can more accurately measure o,>: (1) the less locally
variable o, is (as reflected by A), (2) the lower the conditional kurtosis of £,,
(3) the lower o7, and (4) the more the true data generating mechanism
resembles GARCH(1, 1) (e.g., if GARCH(1, 1) is the data-generating process,
corr, (£7,£,) = 1).

The Taylor / Schwert Model

Davidian and Carroll (1987) argue (though not explicitly in a time series or
ARCH context) that scale estimates based on absolute residuals are more
robust to the presence of thick tailed residuals than scale estimates based on
squared residuals. Schwert (1989) applied the Davidian and Carroll intuition to
ARCH models, conjecturing that estimating o,> with the square of a distributed
lag of absolute residuals (as opposed to estimating it with a distributed lag of
squared residuals, as in GARCH) would be more robust to ¢,’s with thick tailed
distributions. Taylor (1986, Chapter 4) proposed a siAmilar method. Hence, we
consider the model y =0, Kk=w — 08, and g=a[|£,| — E,|£ |], with the data
generated by either (3.1), (3.1), (5.1)-(5.2) or (5.1')-(5.2). We also assume that
the distribution of £, /0 does not vary with x, o, ¢, or h—i.e., that o enters the
distribution of £, only as a scale parameter.
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If we allow a to be a function of x, y, and ¢, the optimal a is A /[sd,(|,])].
The minimized asymptotic variance of A~1/4[¢2 — o:2] is

(64)  4-sd,(1&]) 0 [1=corr, (I€1,€,)] - A/E €l

As in the GARCH case, global optimality of the Taylor /Schwert model in
this class of models requires that @ be constant. Again, when E[|£ /ol] is
constant, this is equivalent to In(o?) being conditionally homoskedastic in the
diffusion limit.

Schwert’s conjecture that this model is more robust than GARCH to condi-
tionally thick tailed £,’s can be rigorously justified. For example, compare the
relative efficiencies of GARCH(1, 1), the Taylor/Schwert model, and the
asymptotically optimal filter, supposing for the moment that corr,(ff,gy)=
corr, (|€,1,£,) =0, and that £, is conditionally Student’s ¢ with K > 2 degrees
of freedom. It is important to note that (6.4) is not directly comparable to (6.3),
since in (6.3) y=0? and A is the instantaneous standard deviation of o2,
whereas in (6.4) y =0 and A is the instantaneous standard deviation of ¢. In
general the A in (6.3) equals 20 times the A in (6.4). Making this adjustment,
we can compare the variances in (6.3), (6.4), and the variance achieved by the
optimal filter. Figure 2 compares the minimized asymptotic variances of
h~V462 — 02] achieved by these filters, plotting both the ratio of the GARCH
to the Taylor /Schwert variance and the ratio of GARCH to the optimal filter
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error variances over a range of K values. The GARCH error variance ap-
proaches infinity as K | 4, and is infinite for K < 4. The Taylor /Schwert model’s
error variance approaches infinity as K |2 and is infinite for K < 2, but is finite
for K> 2. The optimal filter’s variance is bounded as K | 2. The horizontal line
at 1 in Figure 1 divides the region in which the Taylor /Schwert error variance is
lower (above the line) and the region in which the GARCH error variance is
lower (below the line). For low degrees of freedom, K, the Taylor /Schwert
model is much more efficient than GARCH, and remains more efficient until
K> 15.56. Perhaps surprisingly, the variance of GARCH is only about 6.5%
lower even as K — o, so even under the most favorable circumstances, the
efficiency gain from using GARCH is slight. When the &,’s are conditionally
thick tailed, the efficiency loss with GARCH can be dramatic.!' As K — o, the
GARCH and optimal error variances converge, but fairly slowly: even for
K =20 the GARCH variance is about 13% higher than the optimal.

Our robustness results closely parallel those of Davidian and Carroll (1987).
To see why, consider the optimal filter of Theorem 5.2, assuming for now that
the prediction component E[¢, ,,,I¢, .., x,, y,] = 0 almost surely for all ¢. The
optimal g is then proportional to the score dIn[f(¢ |x,y,t)]/dy. A necessary
condition in this case for GARCH to be optimal is that ¢, is conditionally
normal. Optimality of the Taylor /Schwert model in this case requires £, to be
conditionally double exponential, and hence thicker tailed than the normal.
Abandoning the assumption of optimality for either model, we see that GARCH
uses a normal quasi-likelihood in estimating the level of y,, while Taylor-Schwert
uses a double exponential quasi-likelihood. More generally, the choice of an
ARCH model embodies a choice of quasi-likelihood, a choice which can be
analyzed in much the same way that Davidian and Carroll did in the case in
which the conditional variance of the error term was a function (of known form)
of observable variables.

Several papers in the ARCH literature have assumed conditionally Student’s
t errors and have treated the degrees of freedom as a parameter to be
estimated. In modelling daily exchange rates, for example, Baillie and Bollerslev
(1989) estimated degrees of freedom parameters ranging from 6.3 to 18.5, while
Hsieh’s (1989) estimates ranged from 3.1 to 6.5. In modelling daily stock price
indices, Baillie and DeGennaro’s (1990) estimated degrees of freedom ranged
from 9.2 to 10.2.'> More broadly, thick tailed standardized residuals are the

' When ¢, is conditionally distributed GED (Harvey (1981)), the analysis is similar:
Taylor /Schwert performs much better than GARCH when £, is conditionally thick tailed. On the
other hand, GARCH may perform substantially (up to 22.5%) better than Taylor /Schwert when ¢,
is much thinner tailed than the normal. In the range of parameter estimates found for asset prices
in the empirical literature (e.g., Nelson (1989, 1991), Sentana (1992)) GARCH and Taylor /Schwert
perform about equally.

'2 These models were estimated under the assumption that the estimated ARCH model was
correctly specified. If this is literally true, there is clearly no efficiency gain in abandoning the true
model. If the model is not correctly specified the robustness of the conditional variance estimates is
important.
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norm in empirical applications of ARCH (see Bollerslev et al. (1992)). This
range of estimates, along with Figure 2, suggests the use of absolute residuals as
opposed to squared residuals in estimating time varying volatilities in asset
returns.

Exponential ARCH (EGARCH)

The exponential ARCH (EGARCH) model of Nelson (1991) was largely
motivated by Black’s (1976) empirical observation that stock volatility tends to
rise following negative returns and to drop following positive returns. The
EGARCH model exploits this empirical regularity by making the conditional
variance estimate a function of both the size and the sign of lagged residuals.
AR(1) EGARCH setsy =In(0?),k = —B-[§ —al), and g = 6, /6 + yl|£, /6] —
E|¢,./oll

Again we assume the data are generated by either (3.1), (3.1), (5.1)-(5.2), or
(5.1)-(5.2). If we make the simplifying assumptions that E[¢,-16,11=0 and
that the distribution of ¢ /o is independent of o, it is easy to solve for the
(locally) optimal y and 6:

(65)  y*=A[1-corr? (¢,,£,)]"/sd (& /ol), and
(6.6) 6*=A-corr,(£,,¢,).

For EGARCH to be optimal in this class requires that y* and 6* be
constant. It is straightforward to check that when the first two moments of ¢ /o
and |£,/o| are constant, constant y* and 6* is equivalent to conditionally
homoskedastic In(o,?) and constant conditional correlation between x, and o2

The minimized asymptotic variance of 4~1/%[6? — ;2] for this case is

(67)  2-sd,(1&1) A 0t [(1 - con? (£,,€,))"”* - com, (&, I£,1)] /E,¢..

If we adjust for the changed definition of y and therefore of A(-), we see that
apart from the replacement of “1” with “(1— corr?(¢,,£,))"/2,” this is the
minimized variance for the Taylor /Schwert model. The only difference between
the two models in the O,(h'/*) error components is that the EGARCH takes
advantages of conditional correlation in £, and ¢, (e.g., “leverage effects”). This
suggests that we can significantly improve the variance estimators by exploiting
correlations between changes in observable variables and changes in o?—the
effects are “first order” appearing in the dominant component of the measure-
ment error, the Op(hl/ 4) term—and so are likely to be important in practice.
This, along with its relative robustness to conditionally thick tailed £,’s, proba-
bly accounts for much of the empirical success of EGARCH in applications to
stock market returns data (e.g., Pagan and Schwert (1990)).
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Related Variants

Higgins and Bera (1992) nested GARCH and the Taylor /Schwert model in a
class of “NARCH” (nonlinear ARCH) models, which set ¢7*° equal to a
distributed lag of past absolute residuals each raised to the 28 power. Using a
geometric lag, this corresponds to y=02®, R=w—6-§, and g=a-[|£ |*° -
E[lIE 1P

The chief appeal of NARCH (as with Taylor /Schwert) is that when & < 1, it
is more robust to conditionally thick tailed £,’s than GARCH: NARCH limits
the influence of large residuals essentially the same way as the /, estimators
employed in the robust statistics literature (see, e.g., Davidian and Carroll
(1987)). While GARCH and Taylor /Schwert use normal and double exponen-
tial likelihoods, respectively, in their estimation components, NARCH uses a
GED quasi-likelihood."

Another variant is the threshold ARCH (“TARCH”) model of Zakoian
(1990). The locally minimized asymptotic measurement error variance (up to the
O,(h'/*) terms) of this model are the same as EGARCH.

Similarities and Differences in k() and a(-) in these Models

Though the GARCH, EGARCH, Taylor/Schwert, Higgins/Bera, and
Zakoian models have important differences, they have at least one similarity
and potential limitation: for global asymptotic optimality of a(-) given g*(-) (as
in Theorem 5.3), each requires {In(o?)} to be conditionally homoskedastic in
the diffusion limit. This is clearest when we examine the diffusion limits of these
models considered as data generating processes. The diffusion limit for {In(c,?)}
in the Higgins /Bera model as a data generating process takes the form'

6.8 d|In(o2)| =6 "Ywo, 2 — 6*)dt — a* dW,
)

where W, is a standard Brownian motion and 6* and a* are constants. The
Taylor /Schwert and Zakoian models are a special case of (6.8) with 6 =1/2,
and GARCH is a special case with § = 1. The AR(1) EGARCH diffusion limit
for {In(s;?)} is given by (4.21). In (4.21), and for any 6 >0 in (6.8), the
conditional variance of the increments in {In(o,?)} is constant. A few ARCH
models have been proposed that do not make this assumption (e.g., (4.26), the
QARCH model of Sentana (1992), and the model of Friedman and Laibson
(1989)). Unfotunately, these models make similarly restrictive assumptions on
the conditional second moments. Since the second moment matching condition

3 Davidian and Carroll (1987) considered the cases & = 1, 1/2,1/3, 1/4, 1/6, and lim § |0,
finding as we do that scale estimates using 8 < 1 are more robust in the presence of thick tailed
residuals than estimates using & = 1. Scale estimates using 8’s close to 0 were sensitive to “inliers”
rather than outliers.

% The limits for {(r,z} in GARCH(1,1) and AR(1) EGARCH as data generating processes are
given in Nelson (1990). The diffusion limit for {o,} in the Taylor/Schwert model is given in Nelson
(1992). We applied Ito’s Lemma to convert the diffusion limits into stochastic differential equations
for {In(c;2)}.
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(4.15) has a first order effect on the measurement error variance, practitioners
should probably parameterize g(-) in a way that allows (but does not force) the
conditional variance of {ln (0,2)} and its instantaneous correlation with {x,} to
vary with the level of ¢, and x,.

Jump Diffusions and the Friedman /Laibson Model

Friedman and Laibson (1989) argue that stock movements have “ordinary”
and “extraordinary” components. This motivated their modified ARCH
(“MARCH”) model, which bounds g(+) to keep the “extraordinary” component
from being too influential in determining &,2. The MARCH model is similar to
GARCH, but with

(6.9) &,2”,=w-h+[3h-62+h1/2g($x), where
(6.10) g(&)=a>0 if y-£i>m/2,
=a-sin[y-£2] if y-E2<w/2.

Though Friedman and Laibson’s model is impossible to analyze using the
methods of this paper (it does not have a nontrivial diffusion limit), it can be
understood as a robust filtering procedure: if &, has occasional large outliers,
least-squares based procedures such as GARCH will not estimate o efficiently.
Much the same intuition comes from the near diffusion results, in which the
conditional distribution of £, is allowed to be considerably thicker tailed than
the normal. In accord with Friedman and Laibson’s (and Davidian and Carroll’s)
intuition, the thicker tailed the conditional distribution of ¢,, the less weight
should be given to “large” observations, at least in the score component S of
the optimal filter. For example, if (¢, ¢,) is conditionally bivariate ¢ with K> 2
degrees of freedom, we have (in the notation of Theorem 5.2)

(6.11) P=p(x,y,t)A(x,y,t)¢,/o(y), and

o(y) [K+1 £/0(y)°
o(y) [K-2 1+£/[(K-2)o(y)]

Given y, the score is bounded above by (K + 1)o’(y)/o(y). The lower the
degrees of freedom, the tighter the bound. P, however, remains linear in ¢, as
in the conditionally normal case.

Unfortunately, the near diffusion assumption does not allow ¢, and ¢, to be
too thick tailed. In particular, £, and ¢, are assumed to have (condltlonally)
bounded 2+ § absolute moments, Wthh is why we assumed K >2 in the
Student’s ¢ case. In the limit as 4 | 0, this effectively rules out the possibility
that “lumpy” information arrival causes occasional large jumps in x, or y,. The
assumption of a 2 + § absolute moment is also crucial for the robustness results
in the paper: for example Engle and Ng (1993) show that even relatively
“robust” ARCH models such as EGARCH may perform poorly in the presence

(612) S=
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of gross outliers. Such occasional large jumps may well be a feature of some
financial time series. For example, using daily stock returns data, Nelson (1989,
1991) generated {6} using an EGARCH model, but found occasional large
outliers (i.e., more than five or six times &,).!

It would be interesting to extend our results to allow the data to be generated
by a jump-diffusion (or a near jump-diffusion). We suspect that this would lead
to bounds on both P and S in the optimal g(-) function: If we fail to impose
such a bound, g(fo, x, 9,t) will be enormous when a jump occurs, which may
well make such jumps too influential in determining {,}.

7. CONCLUSION

One widely voiced criticism of ARCH models (see, e.g., Campbell and
Hentschel (1993) and Andersen (1992)) is that they are ad hoc—i.e., though
they have been successful in empirical applications, they are statistical models,
not economic models. This criticism, though correct, does not go far enough;
even as purely statistical models, ARCH models are ad hoc. In applied work,
there has been considerable arbitrariness in the choice of ARCH models,
despite (perhaps because of) the plethora of proposed ARCH specifications.
Many models have been proposed, but few compared to the infinite potential
number of ARCH models. How can we choose between these models? How do
we design new models? We summarize the main implications of our results for
the design of ARCH filters for near diffusions as follows:

Rule 1: Asymptotically optimal ARCH models are as “similar” to the true
data generating process as possible, in the sense that the first two conditional
moments (as functions of the state variables and time) implied by the ARCH
model considered as a data generating process have the same functional form as
in the true data generating process.

The choice of an ARCH model therefore embodies an implicit assumption
about the joint variability of the state variables x, and y,. GARCH(1, 1), AR(1)
EGARCH, the Taylor/Schwert model, NARCH, and TARCH effectively as-
sume that the conditional variance of ¢,* is linear in o,*. Some ARCH models
(e.g., GARCH, NARCH, Taylor/Schwert), effectively assume that increments
in x, and ¢ are uncorrelated. EGARCH and TARCH assume a constant
conditional correlation. It is probably wise to relax these constraints, since
specification of the conditional second moments of {x,, y,} affects the O,(h'/*)
terms, and so is likely to be important in practice.

Rule 2: The optimality selected g(-) has two components. The first,
El¢, i nl€, 10 %1, ,], forecasts changes in {y,}, for example by taking advan-

15 For example, the market drop on September 26, 1955 (in response to Eisenhower’s heart
attack) was eleven estimated conditional standard deviations. There were drops of about seven
estimated conditional standard deviations on November 3, 1948 and June 26, 1950 in response to
Truman’s surprise reelection and the beginning of the Korean war respectively. The Crash of
October 19, 1987 was almost eight estimated conditional standard deviations, and the market rose
seven estimated conditional standard deviations on July 6, 1955.
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tage of “leverage effects.” The second component of the optimal g(-) is
proportional to the score of ¢, treating y as an unobserved parameter. This
term estimates the level of {y,} in much the same way as a maximum likelihood
estimator of a scale parameter in the ii.d. case. The robustness results of
Davidian and Carroll (1987) hold in the ARCH context: in particular, EGARCH
and Taylor /Schwert are more robust than GARCH to conditionally thick tailed
&.’s. It is probably wise to design ARCH models to be robust to thick tailed £’s
(perhaps by bounding g(-) as suggested by Friedman and Laibson), since
conditional leptokurtosis seems to be the rule in financial applications of
ARCH.

Rule 3: The asymptotic conditional mean of [¢? — ¢,%] is zero when the drifts
in {x,, y,} are well specified—i.e., when u(x,y,t)=A(x,y,) and x(x,y,t)=
K(x, y,t). Incorrect specification of the drifts creates an 0,(h'/?) asymptotic
bias in [ $, — y,]. Such bias has a second order (0,(h'/?)) effect on [, — y,], but
an 0p(1) effect on the medium and long-term forecasts generated by the ARCH
model. If filtering rather than forecasting is of primary concern, specification of
A(-) and k() is probably less important than specification of g(-).

Our results could be extended in a number of interesting ways. In a sequel
(see Nelson (1993)), we allow x, and y, to be vectors, and consider smoothing
(i.e., allowing J, to depend on leads and lags of x,) as well as filtering. Other
extensions are also possible. For example, versions of Theorem 2.1 are available
which allow a jump diffusion limit for {x,,y,}, and which do not require
{x,,y,,9,} to be Markov (see, e.g., Jacod and Shiryaev (1987, Chapter 9)).
Unfortunately, the regularity conditions are considerably more difficult to check
than the conditions of Theorem 2.1.1°

The most important extension would be to allow the parameters of the
ARCH model to be estimated by quasi-maximum likelihood methods. All this
paper’s suggestions for ARCH model building rely on the conjecture that fitting
misspecified parametric ARCH models by maximum likelihood selects (asymp-
totically as 4 |0 and the span of calendar time goes to infinity) the “best”
available filter.!” Monte Carlo experiments reported in Schwartz, Nelson, and
Foster (1993) suggest that this assumption is reasonable in practice. Unfortu-
nately, however, formal asymptotic theory for ARCH parameter estimates has

16 Foster and Nelson (1993) are able to drop the Markov assumption in analyzing rolling
regressions and GARCH by using a central limit theorem for semimartingales in place of Theorem
2.1. It isn’t clear if this method can be successfully applied to broader classes of ARCH models.

The basis for this conjecture is as follows: The probability measures of two diffusion processes
are in general singular unless the functional form of the conditional variances and covariances as
functions of the state variables is identical in the two processes (see, e.g., Liptser and Shiryaev (1977,
Chapter 7)). The drift functions can differ, but the variance functions must be identical. Put another
way, in continuous time, conditional variances and covariances completely dominate the likelihood.
If this is also true for sequences of discrete time processes in the limit as continuous time is
approached, then a misspecified ARCH model fit by MLE should, in the limit, select the parameters
in the class of ARCH models fit which best match the conditional covariances—namely the
(constrained) optimal filter. It is also suggestive that the optimal filter matches the functional forms
of the first two conditional moments to the true data-generating process.
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proven very difficult even for well-specified ARCH models, and is not likely to
be any easier for misspecified models.
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APPENDIX

ProoF oF THEOREM 2.1: This is a modification of Stroock and Varadhan (1979, Theorem 11.2.3).
The version of the result we cite is based on Ethier and Kurtz (1986, Chapter 7, Corollary 4.2). We
set Ethier and Kurtz’s “n” equal to #~4. There are two changes from Ethier and Kurtz’s version of
the Theorem: first, we define {2, ,(y) as a covariance rather than as a conditional second moment.
The conditional first and second moments are each O(h~4), so the difference between the
conditional covariance and the conditional second moment vanishes at rate O(h~24) as h 0.

Second, Ethier and Kurtz use truncated expectations in (2.2)-(2.3)—i.e.,

22) pan(y)= h—AE[(hYk+l OB (BAENARSY A =y], and

(23) Q4 4(v) =h 2 cov[ WYisr =aYi) T Yir 1 —aYil < DIaY, =y],

where I(-) is an indicator function. They then replace (d') with the requirement that for every £ <0,
(d") h’AP[IthkH—hYk||>e|hYk=y]—»0

as h | 0, uniformly on every bounded y set. To see that (2.2')-(2.3') and (d") follow from (2.2)-(2.3)
and (d"), see the proof of Nelson (1990, Theorem 2.2). (Our version is a little simpler to state, but
Ethier and Kurtz’s is more general and is sometimes easier to verify. The moment conditions in this
paper could be weakened using Ethier and Kurtz’s version.) For the uniformity of the weak
convergence on bounded {y,} sets when ,Y; is fixed, see Stroock and Varadhan (1979, Theorem
11.2.3).

Proor oF THEOREM 3.1: We employ Theorem 2.1 with A4 =1/2, treating x, y, and g as state
variables and conditioning on (x7, y7, g7). First, we consider the first two conditional moments of
¢, on =%, on =¥ (a, ., — a,), and verify that these increments vanish to zero in probability at
an appropriate rate. Under (3.1)-(3.3), the first two conditional moments of {x,, y,} and the 2 +4
absolute moment are all O(k) on bounded (x, y, ¢) sets. The “fast drift” assumption makes the first
conditional moments O(h3/%). This means that when we apply Theorem 2.1 using A = 1/2, the first
two conditional moments of {x,, y,} converge, respectively, to a vector and matrix of zeros, since the
conditional moments are o(h'/?). By Assumption 1, the first two conditional moments of g, , — g,
(normalized by h~'/?) converge to (A4,— B,q,) and C,. The normalized covariances of the
increments in g,, x,, and y, converge to 0. This convergence is uniform on bounded (x, y, g, t) sets,
as required. By Assumption 2, each element of the state vector has a bounded (uniformly on
bounded (x, y, g, t) sets) 2+ & absolute moment. Since the drifts and variances of x, and y, are
zeros in the limit, x; . and y . are constant at x; and y in the limit and A4,, B, and C, are
asymptotically constant in the diffusion limit on the fast time scale at their time T values.

We next verify that the diffusion limit has a unique weak-sense solution. Note first that the limit
diffusion is clearly nonexplosive, since xr . and yr . are constants and g , follows an Ornstein-
Uhlenbeck process. By Assumption 1, 4,, B,, and C, are twice continuously differentiable, so
weak-sense uniqueness follows by Stroock and Varadhan (1979, Corollary 6.3.3 and Theorem
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10.1.3). Weak convergence now follows by Theorem 2.1. (3.22) follows by the elementary properties
of the Ornstein-Uhlenbeck.

ProoF oF THEOREM 4.1: Assumption 3 allows us to solve the optimization problem as if £, ,,
and £, ,,, were conditionally bivariate normal with covariance matrix given by the last term on the
right side of (4.15). The theorem now follows as a special case of Theorem 5.2 below.

Proor oF THEOREM 4.2: By Assumption 3 (dropping time subscripts and function arguments to
ease notation), Cr/2By=E;{g?— 2gé, + £21/2E;[-dg/9y]l = —Efla®-g** —2a - g* - £, +
¢21/2aE[dg* /3y). Minimizing this with respect to a is equivalent to minimizing (a + A?/a). The
first and second-order conditions then yield a = A. (4.10) follows.

Lemmas A.1 and A.2 are needed in the proofs of Theorems 4.3-4.5:

LeMMA A.1: Let x, be an n X 1 diffusion, generated by

(A1) x,=x0+j;]tp(xs,s)ds+j;:o-(xs,s)dWS,

where u(-) is continuous and n X 1,a(-) is continuous and nXn, and W, is an n-dimensional
standard Brownian motion. Then as t |0, the limiting distribution of t~Y*(x, — xy) is
N, , o(xq,0)0(xq,0Y). This still holds if the [(u(x,, s) ds in (A.1) is replaced by t~'/*[u(x, 5) ds.

Proor oF LEmMa A.1: For every ¢ and every 7, 0 <7<¢, define W, ,=¢t"'/?W,, and x, , =
t=12(x,, — x,). For every t, W, , is a standard Brownian motion on 7 € [0, 1]. We now rewrite (A.1)
as

1 1
(A1) x,,7=t1/zj;] w(xg+12x, ,t-5) ds+j;)0'(x0+t1/2x,,s,t's) dw, ..

As 110, t'2u(xy+12x, ,t-s)—> 0 and o(xq+1t'/2x, ,15) > 0(x(,0) uniformly on bounded
(xg, x, ;) sets. Applying Stroock and Varadhan (1979, Theorem 11.1.4), x, , converges weakly to a
Brownian motion with no drift and with diffusion matrix o(xq,0)0(x,,0)". In the case in which

714l x,, s) ds replaces [¢u(x,, s)ds in (A1), 1Y/ duxy +t"/%x, ,t-5)ds replaces t'/[gu X
(xo+1t%x, ,t-s)ds in (A.l'), and the convergence is unaffected. The Lemma follows.

LEMMA A.2: Let x, be as in Lemma A.1. For every p > 2 there is a nonnegative, finite k such that
for every x, and everyi=1ton

a2 (Bl -x0l)

1/p 1/p
s(t‘1+”/2j;)1E0|ui(xs,s)|Pds) +ko Y (t“j;:EO|o-,.,j(xs,s)|pds) ,

j=1,n
where x; , is the ith element of x,, 0; ; , is the i-jth element of o(x,,t), and k is a constant depending

only on'p. When t=V*lu(x,, s)ds replaces [{u(x,,s)ds in (A1), t7 P/ Eglp(x,,5)|” ds re-
places t =1 P/ 2L Eglui(x,, $)7 ds in (A.2).

ProOF OF LEMMA A.2: From (A.1),

(A3) [ (x, - xi0)|=

t’l/zf',u,,-(xx,s)ds + Z t’l/zf'(r,-,}-(xs,s)dl'l/},s
0 0

j=1,n

<t_1/2fl|u,-(xs,s)|ds+ Z =172
0

j=1n

t
[o1.5Cxss ) AW,



36 D. B. NELSON AND D. P. FOSTER

Applying Minkowski’s inequality:

1 p , p1l/p
(A4) [E0|t71/2(xi,t_xi,0)|p] ’ < [Eo(tl/z'/;)|#,-(xs,s)|ds) ]

t
j;)o'i,j(xs’ S) du/;’,s

"

=1,n

pll/p
Eo(t_l/ 2 ) ]
By the integral version of the means inequality (Hardy, Littlewood, and Polya (1951, Theorem 192))
Jolmixy, ) ds <tP=D/P([¢u(x,, s)|P ds)/P. By Karatzas and Shreve (1988, Exercise 3.25),
Elt™ "o, (x5 8)dW; [1)? <mt™'Ey[§|o; (x,,5)|” ds, where m is a constant depending only

on n and p. Substituting both these inequalities into (A.3) yields (A.2). Substituting 1~/ (x,, s)
for u(x,, s) yields the remainder of the Lemma.

Proor oF THEOREM 4.3: That (4,16)-(4.17) has a unique weak-sense solution was established in
Nelson (1990). Next, note that £, = £, since i = u. Employing the definitions of y, J, £,, £,,and g,
and using the “fast drift” convention (3.1'), we have

_ t+h
(A'S) ‘fx,t+h=h l/Zf ySl/z dWl,u

t

t+h

_ t+h _
(A6) &y, 1en="0h 3/41; (E.ys—ys)ds+h 1/2/; ysaZI/deZ,,,
(A7) Ar+n— 4 =h1/4[a(§f,t+h Y —h1/4q,) _§y,1+h]
—Gh_l/zft+h(y,—E,ys+h1/“q,)ds, and
'

(A.8) Ely]=w/0+ (y,~0/0)[exp(—0n"4(s—1)) —1].

By Lemma A.1, (¢, ,,4, €, ,.5) given time ¢ information, converges in distribution to a bivariate
normal with means of zero, no correlation, and variances y, and 2« y,z. To verify Assumptions 1-3,
however, we need convergence of moments (up to order 4+ § for ¢, and 2+ 8 for £,) as well.
These moments (conditional on (x,=x, y,=y, q,=q)) must be uniformly bounded on every
bounded (x, y, g, t) set.

If there is a suitably bounded 2 + & moment for |£,|, a bounded 4 + § moment for |£,| follows
using Lemma A.2. For each h > 0, the {0,?} process (i.e., without x,) satisfies standard Lipshitz and
growth conditions and consequently (see Arnold (1973, Section 7.1)) for every & > 0

(A9  E[o2R]<(1+02*?)exp(C-h?)

where C is a constant depending on «, 6, and w. Moment boundedness for [ ian [4*® now follows
by Lemma A.2, satisfying Assumption 2 and (4.5).
Applying Lemma A.2 and (A.8) we now have

(A10)  h"'?E[q,,,—qlx,=x,y,=y,q,=q] > —aq,
(A.11) h='2var[q,,,—aq,\x,=x,y,=y,q,=q] - var [a(ef—y) —ey] =4a%y?, and
(A12) h‘l/zE[Iq,+h—q,|3|x,=x, Ye=v.4,=q| >0

uniformly on bounded (x, y, g, t) sets as required, satisfying (3.13)-(3.16) and (4.2)-(4.4).



UNIVARIATE ARCH MODELS 37

ProoF oF THEOREM 4.4: That the system (4.20'), (4.21'), and (4.22) has a unique weak-sense
solution is established in Nelson (1990). Under the “fast drift” convention (3.1),

(A13)  Eean=—h /D) [ (ep (3)

~Eexp(y,))ds+h /2 [ exp (v, /2y aw, .
!

A

(A18) &=t h(1/2) [T (Efexo (7)) - exp (3, + h'Vq,) ) s,
t

(A1) &= =B 0 [ =By ds+h 2 [y aw, . and
t

t
(A-lﬁ) Q+n— 4= _h_l/zﬁj;[+h(y1 +h1/4qz _Ez[yx]) ds +h1/4[g(‘§x,l+h’ yAl) _g.v,H-h]
where
A1) e(d5) =8[of-ew(-3/2)+ [(1-51) /2] (8o (—5) - 1)),

By Lemma A.1, given time ¢ information (¢, ,,,,, ,.,) converges in distribution to a bivariate
normal with means of zero, correlation p, and variances of exp(y,) and Y2 The same is true of
&y, +n> €y, +n)- We also require convergence of moments up to order 4 + & for £, ,,,| and 2+ &
for [&, ,,4l. ¥, is Gaussian (see, e.g., Arnold (1973, Section 8.3)), and for s > ¢, y, |y, ~ normal with
mean and variance (a + (y, — a)exp(h~/*B(s — 1)) and

ll/z[(l —exp(—2Bh~14(s —t)))/(Zﬂh‘l/“)].

This allows us to compute E,[exp(y,)] and E [y,] explicitly. For s with ¢ <s <t + h, the conditional
moments of arbitrary order of both y; and exp(y,) remain uniformly bounded on bounded y, sets.
(4.5) and Assumption 2 are therefore satisfied.

Substituting (y, +h'/*q,) for $, in (A.16)-(A.17) and using the formulas for E,[exp(y,)] and
E [y,] leads to

(A18)  hY2E[qp—alx,=x,y,=y,q,=q] > —q-4[(1 —pz)/2]1/2, and
(A.19) R var[q,,,—aqlx,=x,y,=y,q,=q] > 2¢2(1-p?),

(A.20) h‘l/zE[Iq,+h —q,1* P lx,=x,y,=y, q,= q] -0

uniformly on bounded (x, y, g, t) sets, satisfying Assumption 1 and (4.2)-(4.4).

Proor oF THEOREM 4.5: To establish existence and uniqueness of a weak-sense solution to the
system (4.22), (4.20"), and (4.23') we first consider the system (4.20") and (4.22)-(4.23). For the latter
system, we apply Nelson (1990, Theorem A.1). Condition A of that theorem is clearly satisfied. For
its nonexplosion condition, use ¢(x,y)=1+x2+c* We conclude that (4.20') and (4.22)-(4.23)
have a unique weak-sense solution. When Ba > 2 /2 (or, in the fast drift case, whenever B >0 and
a>0) 02 =0 is inaccessible (with probability one) in finite time, so the mapping from {x,, 0?2} to
{x,,In(0?)} is almost surely uniformly continuous on [0, T] for all T < ». The continuous mapping
theorem then delivers a unique weak-sense solution for (4.22), (4.20'), and (4.23').

Convergence in distribution of (¢, ,. . €, ,+,) (and of (£, ,. 4, €, ) given time ¢ information
to a bivariate normal with mean (0, 0), correlation p and variances exp(y,) and ¢2exp(y,) follows
from Lemma A.1. We next check local boundedness of the moments. The conditional distribution of
o2 given o2 (s > t) is given by Cox, Ingersol, and Ross (1985, pp. 391-392). Using a formula for the
noncentral chi-square distribution (see Johnson and Kotz (1970, Chapter 28, (1)) and the integral
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form of the Gamma function we obtain, for v > —a and s > ¢,

2-e‘ﬂ(x"))jl"(u +j+a)

2a] _ .—a 2., Bs—1) - (C'UI
(A21)  E[o*]=cexp(—c ol e )L rG+1y-r(v+j)

j=0

where v =2Bh~ V4 /% and ¢ =281~/ /[%(1 — exp(—Bh ~1/*(s — t))] in the fast drift case and
v=2Ba/P? and c =28 /[¢*(1 — exp(—B(s —t))] otherwise. This can be rewritten as

I'(v+a)

(A22)  E[o2]= ST

exp(—c ol e P ) -M(a+v,v,cr0r e PED),

= 0,2"[1 +0,720(Icl ‘1)] as ¢—0,

where M(-, -, ) is a confluent hypergeometric function. The last equality in (A.22) follows from
Slater (1965, 13.1.4). Since t <s <t + h for the relevant moments, 1 — exp(—B(s —¢)) = O(h) and
¢ !'=0(s—1t) as h|0. E[6?*|In(6}?)=y]—02" >0 uniformly on bounded y sets as h |0,
provided v +a > 0.

To bound the 4 + & conditional absolute moment of &, set a =2+ 8/2. To bound the 2 +§
conditional absolute moment of £, set a= ~1-45/2. In the fast drift case, these moments are
finite for sufficiently small # whenever a >0 and B > 0. Otherwise, we require 2Ba > 2. This
satisfies Assumption 2 and (4.5). We now have, for the fast drift case (the standard case is similar),

(AD)  Eyin=~h77 /) [T (@ (0) - Eexp () ds
+h‘1/zj;t+hexp(ys/2) aw, ,,

A28)  oan=baoanth WD [T (Elexw (5)] - exp (3, H7%,)) ds,

(A25) & n=h"*(aB- ¢2/2)ft'+h(exx>(—ys) —E,exp(-y,))ds
+wh‘l/zj;t+hexp(—ys/Z)sz's, and

(A26)  qp—a,=h""*(aB - w2/2)['+h(exp(—9,) —E[exp(-y,)]) ds

+h1/4[g(é",’+h’9/)_fy,[+h]s where

1,2

A27)  g(£.9) Ew'exp(-ﬁ/Z)[pé'exp(-y‘/Z) +[(1-p2) /2] 7" (€2 exp(-9) - 1)]-

Applying Lemmas A.1-A.2, substituting (y, + h'/%g,) for J, in (A.26)-(A.27), and using (A.22)
leads to

1/2
(A28)  h™VE[q,,,—alx,=x,y,=y.q,=4q] > —q-exp(-y/2Du[(1-p?) /2] ",

(A.29) h=V%var[q,,,—qlx,=x,y,=y,q,=q] = 2¢*(1 —p*)exp(—y), and
(A30)  hV2E[lg,n—a)* P e =x, y,=y,q,=q] >0

uniformly on bounded (x, y, q,t) sets, satisfying Assumption 1 and (4.2)-(4.4). Finally, apply the
delta method to derive the asymptotic variance of [§2 — o;2].

Proor oF THEOREM 5.1: Nearly identical to the proof of Theorem 3.1.
Before we prove Theorem 5.2, we present a heuristic derivation of the first order condition. In
the proof we verify global optimality.
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Under Assumption 4 we may write C,/2B, as

S Loty =6 (60 g0, v.1) de, de,
(A31) Sk .

2[:m (£, x,y,t) S(€sx,y,t) f(&lx, v, 1) dE,

We wish to minimize this with respect to g(-), subject to two constraints: first that E,[g]=0, and
second, that the denominator of (A.31) is nonnegative. For now we ignore these constraints since
they are not binding at the solution (5.10)-(5.11). To derive the first-order conditions, we treat
g(&¥, x,y,1) for each (£F,x,y,t) as a separate choice variable. Setting the partial derivative of
(A.31) with respect to g(£¥, x,y,t) equal to zero, dividing by f(¢¥|x,y,t) and multiplying by
cov,[g - S] yields

(A'32) g(ff’x’y’t)=f_w gyf(gylgf’x’yst)dgy

I 8o x,y,0) =6, T f(£0 & Ix,v.1) de, d,
+ = “S(EF,x,y,1)
2f 86 xy.0) S x.y, D1f (&clx,v.1) dé,

(A33) =P(&F,x,y,0) +0(x,y,1) - S(&5,%,y,1) =P+ S

for some function w(x,y,?). Comparing (A.32)-(A.33) with (A.31), it is clear that C;/2By=
o(x7, y7,T). Substituting P + wS for g in (A.33) and solving for w leads to a quadratic in @ with
two solutions:

+ [cov, (S, P)* + (A% —var, (P)) - var, (S)] v

var, (S)

The “+7 solution is the only solution satisfying the constraint 0 < [* ,g(&,, x, y,1) - S(&,, x,y,1)-
f(&,lx, y, 1) dE,, leading to (5.10)-(5.11).

(A34) - —ou (P, 5) .

Proor ofF THEOREM 5.2: Next, we verify that this g(-) is globally optimal. Dropping subscripts,
we write this g(-) as g =P + wS. Now consider a perturbation of this function, §=P + S + H,
where H is a function of £,, x, y, and ¢t with E,[/H]=0 and cov,[g, S]> 0 (these conditions force &
to obey the constraints E,[g]=0 and By > 0). Our claim is that the asymptotic variance of g is
strictly higher than that of g unless H = 0 with probability one, or equivalently

E[(P+os-¢))| E[(P+ws-£)] +E[H2]+2 cov[H,P+wS-¢,]
2-cov, [P+ wS,S] 2:cov,[P+wS,S]1+2cov,[H,S]

for all such H. Recall that w = C,/2B,=E,[(P + 0§ — §y)2]/[2 ~cov, (P + wS, S)), so the left side
of (A.35) equals w, and the E[(P+ S — §y)2] term on the right of (A.35) equals w - [2 - cov, (P +
S, S)]. Making these substitutions, and using the positivity of both denominators in (A.35),(A.35)
becomes

(A36)  O0<E[H?*]-2-(cov,[H,&]~cov,[H,P]).
Recall that H is a function of £, but not of ¢, and that P=E,[£ |£,], so

(A35)

(A37)  cow[H.g,]= [ [T H(ex 3,08 F(£6lx,v,0) dE, dé,
-/ H(fx,x,y,r)[ff 6 F(£,10x,y,1) d, | F(£1x, v, 1) de,

= |7 H(gxy 0E[g 16 x, 3,01 (6,0, v,1) e,

=cov,[H, P].
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(A.35) is therefore equivalent to 0 < E,[H?). The asymptotic variance of AV (9)? — o(y)?]
follows by the delta method.

Proor oF THEOREM 5.3: Nearly identical to the proof of Theorem 4.2.
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