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In this paper we describe four axioms that uniquely characterize the class of locations in tree networks that are obtained by
minimizing an additively separable, nonnegative, nondecreasing, differentiable, and strictly convex function of distances. This result is
analogous to results that have been obtained in the theory of bargaining, social choice, and fair resource allocation.

The single facility location problem on a network is the
problem of selecting a point in a network so as to
optimize an objective function that is distance dependent
with respect to a set of points of the network. The problem
has received a great deal of attention, as can be seen from
the references in Hansen et al. (1987), Handler and Mir-
chandani (1979), and Mirchandani and Francis (1989).
Most of the work in this area has been concerned with how
to efficiently determine the point that optimizes the objec-
tive function. The conceptual issue of what is the appropri-
ate objective function has received less attention. The
choice of objective function tends to be ad-hoc and sup-
ported by attributes that are outside the ambit of the for-
mal model. A number of researchers—Buhl (1988),
Halpern and Maimon (1980), Holzmann (1990), McAllis-
ter (1976), and Morril and Symons (1977)—have investi-
gated this question. This paper is also concerned with this
issue. The approach taken will be the axiomatic one. In
this we follow in the spirit of Buhl (1988), Holzmann
(1990), and Vohra (1996).

So as to focus the discussion, we introduce some nota-
tion. Let T be a tree network with vertex set N and arc set
A. Consider the arcs to be rectifiable, and for any two
points x and y (whether in N or in the interior of an arc) in
T we denote by d(x, y) the length of the shortest path
between them. Let (in an abuse of notation) § = {1, ...,
n} be a finite set of points in 7. Associated with each point
I € § is a nonnegative number w,. Depending on the
context, this number could represent the number of indi-
viduals at, or importance of, that point and is often called
a weight. The general single facility location problem on a
tree can now be stated as follows:

min V(wd(1, x), wod(2, x), ...
xeT,

, Wad(n, x))
s.t.

where V' is a real valued function on R”.

Subject classifications: Facilities: location, discrete.
Area of review: DISTRIBUTION.
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If V(wd(1, x), wod(2, x), ..., w,d(n, x)) = Z{wd(, x):
i € S}, then, a point x € T that minimizes V is called an
absolute median (Hakimi 1964). If, V(w,d(1, x), w,d(2,
x), ..., w,d(n, x)) = max{wd(i, x): i € S}, then, a point
x € T that minimizes V is called a weighted absolute center
(Hakimi 1964). Both the absolute median and weighted
absolute center have been extensively studied. Other
choices of V' that have been made are listed below along
with the names of the points at which V' attains a mini-
mum.

(1) max {d(i, x): i € S}; absolute center (Hakimi 1964).

(2) uE{wd(, x):i € S} + (1 — w) max {d(i, x): € S}}
for u € (0, 1); u-cent-dian (Halpern 1976).

(3) 2{wd(i, x)": i € S}, ¢t > 1; for t = 2 called a squared
median (Vohra 1989b).

(4) Sics Wd(i, x) — n=' 2 {wd(i, x): i € S})?; variance
point (Halpern and Maimon 1980).

The list is not exhaustive. It is included to suggest the
number and variety of choices that have been made for V.
For a succinct review of the properties of and algorithms
used to determine these points, see Hansen et al. (1987).

With so many choices, it may not be clear why one
choice of V' should be preferred over another. Clearly, the
context in which the facility location problem is being
solved will play some role. For example, suppose the facil-
ity we are siting provides a service whose quality is in-
versely related to the distance from the facility. Since our
location is obtained by minimizing V, this would immedi-
ately rule out any V" which is decreasing in d(i, x) for all
i € §. These considerations alone are not sufficient to
whittle the number of choices down to one. The axiomatic
approach we take in this paper does not resolve this mat-
ter. It does, however, make explicit what is involved in
choosing one function V" over another.

0030-364X/98/4603-0347 $05.00
© 1998 INFORMS
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The axiomatic method starts by imposing axioms or
principles that arg min V(w,d(1, x), w.d(2, x), ..., w,d(n,
x)) should satisfy. Notice we impose conditions on the
point that will minimize V" as opposed to V itself. We think
it more natural to specify conditions on how a location
behaves rather than on the function that will be used to
measure the desirability of different locations. Second, a
characterization of V' alone, does not specify why one
should minimize V rather than maximize. To decide one
would have to appeal to some property that the resulting
location should possess. Given the axioms, one deduces
the class of, or unique V, that satisfies these axioms. Dif-
ferent axioms would characterize different objective func-
tions. Thus, as Holzmann observes, “it becomes possible to
argue in favor of, or against, a particular location in terms
of principles satisfied or violated”.

The axiomatic approach has been used successfully in a
number of different areas, like social choice, Moulin
(1988); bargaining, Lensberg and Thomson (1989); and
cost allocation, Young (1985). In the context of facility
location, the axiomatic approach was pioneered by Holz-
mann (1990), who identified axioms that uniquely charac-
terize the squared median of a tree network. Subsequently,
other axioms were proposed and used to characterize the
absolute median, absolute center as well as squared me-
dian of a tree in Vohra (1996). Buhl (1988) has also ar-
gued the importance of the axiomatic approach in facility
location, but the approach taken is different. He imposes
axioms that characterize V' rather than the location that is
obtained by optimizing V.

Our goal in this paper is to describe a set of axioms that
uniquely characterize the class of points in tree networks
that are obtained by minimizing V(w,d(1, x), w.d(2,
X), ..., w,d(n, x)) when

Viwid(1, x), wod(2,x), ..., w,d(n,x))
=2 {wifld(i, x)): i € S},

where f is a nonnegative, nondecreasing, differentiable,
and strictly convex function. The squared median is an
example with f(x) = x* This class of location functions is
tree independent in the sense that it depends only on the
distance between the points in S and not the “shape” of
the specific tree which contains them. It excludes, for ex-
ample, the following location rule:

“If the underlying tree is a star, locate at the absolute center,

otherwise locate at the squared median”. Call this particular

location function the quasi-squared median. We give a rigor-
ous definition of this notion of tree independence later.

Before continuing we note that the restriction of our
efforts to tree networks is not uncommon in the facility
location literature. We have been unable to extend our
proof technique to the case of more general networks. In
the last section of this paper we discuss some of the diffi-
culties associated with such a task. We note that results
parallel to the kind we obtain here have been obtained in

the context of bargaining, Lensberg (1987); apportionment
of taxes, Young (1987); and social choice, Young (1976).

THE AXIOMS

Let § be a finite set of points in the tree T. Associated with
each x € § is a nonnegative number, w(x:S), say. Let w(S)
= {w(x:5): x € S}. We will call the pair [S, w(S)] a
customer set. By a location rule in T we shall mean a rule L
that associates with each customer set [S, w(S)] a unique
point L([S, w(S)]) in T. If x € T is such that x = L([S,
w(S)]) we will say that L selects x with respect to [S, w(S)].
In defining L we have restricted it to being single valued.
Further notice that there is more than one set S which can
be used to describe a given distribution of customer posi-
tions. These sets differ in having different points being
assigned a weight of zero. For example, let S be the set
consisting of a single point x with weight 1 and Q be the
set consisting of two points x and y, with a weight of 1 at x
and 0 at y. We will treat different descriptions of the same
customer distribution as being equivalent. So, we would
treat S and Q above as the same sets. We will assume that
each customer prefers to have the location as close as
possible to themselves. The first condition we impose on L
is the following:

Unanimity (U). If the customer set [S, w(S)] consists of a
single point x, then, L([S, w(S)]) = x.

If [4, w(A)] and [B, w(B)] are two customer sets we
denote the combined customer set by [A U B, w(A U B)]
where (in an abuse of notation) we define w(4 U B) =
{w(x:4) + w(x:B): x € T}. The second condition we
impose on L is

Consistency (CS). If [4, w(A)] and [B, w(B)] are two
customer sets with the property that L([A, w(A)]) = L([B,
w(B)]), then L([A U B, w(A U B)]) = L([4, w(A))]).

The consistency axiom captures the following notion.
Imagine two separate groups of individuals (say Republi-
cans and Democrats) [4, w(A4)] and [B, w(B)]. If both
groups independently deem the point x as an acceptable
location, then, x should be acceptable to the group formed
by combining them. This axiom was first introduced by
Young (1974) in the context of voting. The motivation in
that context is the following. Imagine Congress and the
Senate separately deciding in favor of bill A over bill B,
but in joint session they reverse themselves. A voting rule
that satisfied consistency would prevent such an occur-
rence. In this sense the main result of this paper can be
seen as a “locational” analog of the results in Young
(1974, 1976).

There are a wealth of location rules that satisfy U and
CS, and so these two axioms are not sufficient to reduce
the choices available to just one class. Further restrictions
need to be placed on the choice of an acceptable location.
The next axiom is a regularity condition that captures the



notion that L should not be “overly sensitive” to changes
in the weights, w(S).

Continuity (CN). For fixed S, L([S, w(S)]) is continuous
in each w(x:S) = 0,x € §.

One of the simplest of nontrivial customer sets that must
be dealt with is when |S| = 2. It seems reasonable to
suppose that ones intuition about what is fair or reason-
able in selecting a location should be clearest in this situa-
tion. The next two axioms place restrictions on L in the
way it selects a point in this situation. For notational pur-
poses we define a simple customer set, [S, w(S)], to be one
where § consists of just two points. Call the two points
LEFT and RIGHT. If [S, w(S)] is a simple customer set
we will write it as [w;, w, | D] where:

(a) we will sometimes refer to the points LEFT and
RIGHT as 1 and 2, respectively;

(b) w;,j =1, 2, is the weight at point j; and

(c) D is the distance between points 1 and 2, that is, D =
d(1, 2).

Tree Independence (TI). Let T, and Ty be any two trees
containing simple customer sets [A, w(A)] and [B, w(B)]
respectively. If w,(A) = w,(B) and wy(A) = w,(B) and the
distance between 1 and 2 in both trees are the same, then
the rule L selects the same point in the sense that

d(1, L([A4, w(A)]) = d(1, L([B, w(B)])), and
d(2, L([4, w(A)])) = d(2, L([B, w(B)])).

The axiom TI excludes the quasi-squared median.

Lemma. If TI is satisfied, L([w,, w, |D]) will be some point
between LEFT and RIGHT.

Proof. Consider first a tree, T, that is a single path of
length D. Let LEFT and RIGHT be the left and right
endpoints, respectively, of this path. Assign a weight of w,
to LEFT and w, to RIGHT. By definition, x = L([w, w,
|D]) must be between LEFT and RIGHT.

Now consider any other tree T, and a simple customer
set [B, w(B)] such that w,(A4) = w,(B) and w,(A4) = w,(B)
and the distance between 1 and 2 is D. By TI

d(1, L([B, w(B)])) = d(1, L([A4, w(A)])) = d(1, x),
and
d(2, LB, w(B)D) = d(2, L[4, w(A)])

=D —d(1, x).
These two equations imply that L([B, w(B)]) must be be-
tween LEFT and RIGHT even in Tp. []

Thus, we can represent L([w,, w, |D]) by its distance
from the point LEFT. From now on, L for a simple cus-
tomer set will be specified by the distance from LEFT.
Given TI, the axiom U is redundant. Simply take w, = 0,
then pick an equivalent customer set S which does not
include the point RIGHT and now use TI to reduce the
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tree to the singleton LEFT. Thus, the only possible point
to locate at is the LEFT point (we include the axiom U, so
as to make some of the proofs that follow clearer).

Population Monotonicity (PM). Suppose [S, w(S)] is a
simple customer set and x = L([S, w(S)]), but not LEFT or
RIGHT. Then d(1, L([S, w(S)])) is strictly increasing in w,.

Informally, increasing w, shifts L([S, w(S)]) to the right.
Notice that PM does not assume that L([w,, w, |D]) is
between LEFT and RIGHT. This would happen if L satis-
fied TI as well.

The main result of this paper is

Theorem. A location rule L satisfies TI, CS, PM, and CN
iff 3 a nondecreasing, nonnegative, differentiable, strictly
convex function f such that:

L([S, w(S)])
= argmin [, {w(y:S) f(d(x,y)): y € S}x € T]

for all customer sets [S, w(S)].

If we drop the restriction that L is single valued (and
modify the statements of the axioms appropriately), then
the theorem holds with strict convexity of f replaced by
convexity. As the proof involves no new ideas, but is more
tedious, we omit it. An example of a location rule that is
not single valued is the absolute median.

INDEPENDENCE OF THE AXIOMS

In this section we establish that each of our axioms is
independent of the others. This shows that each of TI, CS,
CN, and PM is required to characterize the class of loca-
tions we are interested in. We exhibit, for each axiom, a
location rule that satisfies all but that axiom.

It is a simple matter to construct a location rule, L, that
satisfies TI, PM, and CN but not CS. An example is the
variance point. A location rule that satisfies TI, CS, and
PM but not CN is a little harder. To exhibit such a rule let
M([S, w(S)]) be the set of points x that minimize {w(y:
S)d(y, x);y € S}. Define L as follows:

L([S, w(S)]) = arg min [max {w(y:S)d(y, x):y € S}

e M([S, w(S)D].
It is straightforward to verify that this L satisfies PM, CS,
and TI. To see that it does not satisfy CN consider the
customer set [w, w |D] for some D > 0. Now, L([w, w | D])
= D/2but L([w, w + s | D]) = D for any s > 0 no matter
how small.

A location rule that satisfies CN, CS, and TI but not PM

is
L([S, w(S)]) = argmin [max {d(i, x): i € S, w(i:S)

> 0}x € T7.

Finally, a location rule that satisfies all the axioms except
TI is the quasi-squared median.
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The Proof

We begin by showing that any location rule F that can be
represented by

argmin [ X {w(y:S) f(d(x, y)): y € S}x € T1,

where f is a nondecreasing, nonnegative, strictly convex,
differentiable function satisfies TI, CS, PM, and CN. No-
tice that F is well defined because we are minimizing a
continuous function over a compact set. This constitutes
the “easy” part of the theorem. To do this, we need a
characterization of the points x in 7 that minimize 3{w(y:
S)f(d(x, y)): y € S}. The following proposition allows us
to do this.

If C is a connected component of T we will denote by C
N S those points of S in C. Let & be any nonnegative
function from the reals. A point x € T will be called
h-stable with respect to [S, w(S)] iff

> {w(y:S)h(d(x, y)):y € CNS}
< > {(w(y:Sh(d(x,y)):y &€ CNS},

for all connected components of C of T\x. In the case
when T is a path, T\x consists of just two connected com-
ponents. In that case h-stability implies:

> {w(y:S)h(d(x,y)):y € CN S}
=2 {w(y:Sh(d(x,y))y € C NS},

where C is either one of the connected components.

Proposition 1. Let f be a nonnegative, nondecreasing, dif-
ferentiable, and strictly convex function and f' its deriva-
tive. Then, x = arg min [S{w(z:S)f(d(z,y)):z € S} |y €
T] iff x is f'-stable with respect to [S, w(S)].

Proof. We omit the proof (but provide some intuition) as
it is a straightforward generalization of arguments to be
found in Vohra (1989), for example. It is also a special
case of a more general theorem in the theory of variational
inequalities (see Kinderlehrer and Stampacchia 1980). The
algorithmic implications are discussed in Hooker (1989).

To get some insight into why this proposition is correct
(because it will be useful later) it is helpful to consider a
special case. Let T consist of a straight line of length D
with weight w, at one endpoint (LEFT) and weight w, at
the other endpoint (RIGHT). Suppose we seek the
squared median for this configuration:

argmin [w,d (1, x)% + w,d(2, x):x € T].

Rather than compute this quantity analytically, we design a
system of springs that will produce the result. Take an
ideal spring with Hooke constant w, (a number that mea-
sures the stiffness of the spring) and attach one of its ends
to LEFT. Take another ideal spring with Hooke constant
w, and attach one of its ends to RIGHT. Next, join the
free ends of the two springs to each other and call the join
p. Lay these springs down on the line 7. Wait till they are

in equilibrium, and look for where p is positioned on T.
This will be the squared median.

Why is this the case? The equilibrium position is one
that minimizes the total energy of the system. The amount
of energy stored in a spring stretched to a length y is
proportional to y*. The constant of proportionality being
half the Hooke constant of the spring. Hence, if p is at the
point x in 7, the energy stored in the system of springs is:

(1/2)[wd(1, x)* + w,od(2, x)?].

Clearly, at equilibrium, p will position at the squared
median.

Notice also that in equilibrium the force of the spring
pulling p to LEFT should be equal to the force pulling p to
RIGHT. To stretch a spring a length of y requires a force
proportional to y, the constant of proportionality being the
Hooke constant of the spring. So, if p is at position x in T,
the magnitude of the force pulling p to LEFT is wd(1, x).
Similarly, the force pulling p to RIGHT is of magnitude
w,d(2, x). Hence, at equilibrium:

wid(1, x) =w,d(2, x).

Notice that this last expression is simply the stability con-
dition for the special case when T is a line and S is a
simple customer set.

More generally, we think of the function we are trying to
minimize as being the energy of a suitably configured sys-
tem of springs and the stability condition as capturing the
idea that at equilibrium the forces in one direction cancel
out the forces in the other directions. []

The strict convexity of f implies that F is single valued
(see Hansen et al. 1987 for example). That F satisfies CN
follows from the fact that we minimize a continuous func-
tion over a compact set to obtain F([S, w(S)]). That F
satisfies TI is clear. CS follows from the additive separabil-
ity of F. We now show that F satisfies PM. Let [w,, w, |D]
be a simple customer set. By Proposition 1, the rule F
selects a point x between points 1 and 2 such that:

wif'[d(1, x)] = wof'[d(2, x)].

If we denote the distance of x from point 1 by ¢z, then:

wif () = wof (D — 1).

Now increase w, to some w > w,. Then, F must select a
point at a distance y from 1, where y satisfies:

wif'(y) = wf' (D —y).
If y > ¢, then PM is satisfied. Suppose not. Since f is

"

strictly convex and nondecreasing, it follows that f’ is in-
creasing. Hence,

wf' (D —y) =wif' (y) S wif'(t) = waof (D — 1)
<wf'(D—-t)=>D—-y<D—-t>y>t,
contradiction.
To prove the “hard” part of the theorem we begin with a

sequence of propositions that establish its correctness in
the case of simple customer sets of the form [w,, w, [D].
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Figure 1. Configuration used to define g(s).

Proposition 2. L([uw;, uw, |D]) = L([wy, w, D)) V n €
R, and D, w, and w, > 0.

Proof. Suppose first that u is a positive integer. Then, by
producing w copies of the customer set [w;, w, |D], com-
bining them and invoking consistency we deduce that
L([uw,, pw, |D]) = L([wy, w, |D]). Now suppose that u is
rational. Then 3 two positive integers a and b such that
= q/b. Let x = L([w/b, wy/b |D]). Taking a copies of
[w./b, w,/b |D] we deduce that L([aw,/b, aw,/b |D]) = x as
well. Similarly, by taking b copies of [wy/b, w,/b |D] we
deduce that x = L([w,, w, |D]). Hence,

L([}LWI, [.LW2|D]) = L([WI, W2|D])

Finally, suppose u is irrational. Then 3 a sequence of
rational numbers, {u,}, say, such that u, — p asn — .
By CN,

L([#‘nwla ’an2|D]) _)L([’J‘Wl’ N«W2|D])a

however, L([w,Ww1, w2 |D]) = L([w;, w, |D]) ¥V n. This
proves the proposition. []

Proposition 3. L([w, w |D]) = D/2V wand D > 0.

Proof. Suppose we put a weight of w; at LEFT and a
weight of w, at RIGHT (a distance D from LEFT). Let L
select a location at a distance ¢ from LEFT. This location
must be at a distance D — ¢ from RIGHT. Now switch the
positions of the two weights. By TI, L must now select a
location at a distance of D — ¢ from LEFT. Hence, L([w,,
w, ID]) = D — L([w,, wy |D]) ¥ wy, w, > 0. The result
follows with w, = w, = w. []

The main result of this paper is that a location rule L
that satisfies CS, CN, PM and TI, can be represented by a
convex function f. To obtain this function f we define a
function g: R — R as follows:

gs)=w iffL([w, 1|1 +s])=1,5=0.

Thus, g(s) is the weight to be placed at the point LEFT so
that if a weight of 1 is assigned to a point at a distance 1 +
s from LEFT, L selects a location at a distance of one unit
to the right of LEFT. This is illustrated in Figure 1.

So as to better understand the role of the function g,
recall the spring analogy introduced in the proof of prop-
osition 1. We have a location rule L and all we know is
that it satisfies CS, CN, PM, and TI. We believe that it
generates locations that coincide with those obtained by
minimizing an additively separable convex function of dis-
tances. If this is the case we should be able to put together
a collection of springs of appropriate “stiffness” so that the
equilibrium position of the resulting configuration coin-
cides with the location generated by L. To start with, we
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X D-x
1 1
W, w,g(D-x) P W g(x) w

Figure 2. Configuration used to prove Proposition 4.

look at the simplest case of all: a two-customer set with
D =1 and w; = w, = 1. In this situation we know that L
selects a location at a distance 1/2 from LEFT (recall
Proposition 3). So, we need only two springs of equal stiff-
ness to mimic this. Now suppose we move RIGHT a dis-
tance s away from LEFT (causing D = 1 + s) and
simultaneously increase the weight at LEFT. If we are
careful, we can do this and have L select a location at a
distance of one unit from LEFT. However, in moving
RIGHT we stretch the spring attached to LEFT so causing
the equilibrium position to shift. In particular it may not
be at a distance 1 unit from LEFT. To prevent this we
need to increase the stiffness of the spring attached to
LEFT. The function g represents the desired stiffness of
the spring attached to LEFT.

In order to show that the function g is well defined we
need to show that for every s = 0 3 a unique w = 0 such
that L([w, 1|1 + s5)] = 1. Let u(w, s) = L([w, 1|1 + s]). By
Proposition 2, u(w, s) = L([1, 1/w|1 + s]). If we let w tend
to infinity we have by U and CN that L([1, 1/w|l + s])
tends to 0. Hence, for any e > 0 there is a w sufficiently
large such that u(w, s) < e < 1. Now U implies that u(0, s)
=1 + s = 1 because the customer set with weight 0 at
LEFT and weight 1 at RIGHT is the same as the customer
set with weight 1 at RIGHT alone. Since u(w, s) is contin-
uous in w by CN, it follows by the intermediate value
theorem that there is a w such that u(w, s) = 1. As u(w, s)
is strictly decreasing by PM, the w such that u(w, s) = 1is
unique.

The integral of g is the convex function f we seek. For
example, if L were the squared median, it is easy to see
from proposition 1 that g(s) = s. The integral of g(s)
would be s%/2, the convex function we seek.

Proposition 4. Consider the simple customer set [w,, w,
|D). Then L([w,, w, |ID]) = x, if and only if wg(x) =
w-og(D — x).

Proof. Suppose first that x = L([w;, w, |D]) but wyg(x) #
w,g(D — x). Without loss of generality we may assume
that wyg(x) < w,og(D — x). Let p be a point at distance x
to the right of point 1 (see Figure 2). Place a weight of
w,g(x) one unit to the right of p and a weight of w,g(D —
x) at one unit to the left of p. Then, by Proposition 2 and
definition of g,

L([wi, wig(x)|x +1]) = L([1, g(x)]x + 1]) = x,

i.e., L selects p with respect to [wy, wig(x)x + 1]. Simi-
larly, L selects p with respect to [w,g(D — x), w, |D — x +
1]. Invoking CS we deduce that L selects p with respect to
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w1, wig(x)k + 1] U [wo9(D — x), w, |ID — x + 1]. We
illustrate this in Figure 2 for the case when x, D — x > 1.

Now choose w’ > w; so that w'g(x) = wg(D — x).
Place a weight of w'g(x) at a distance of one unit to the
right of p, and w,g(D — x) at a distance of one unit to the
left of p. By Proposition 3 and definition of g, L([w’'g(x),
wog(D — x)|2]) = 1, ie., L selects p with respect to
[W'9(x), wo,g(D — x) |2]. By assumption L selects p with
respect to [w,, w, |D]. Invoking CS we conclude that L
selects p with respect to [w'g(x), w,g(D — x) [2] U [wq, w,
|D]. This violates PM, because w' > w, means that L
should locate to the right of p. Hence, L([w;, w, |D]) = x
> wig(x) = wog(D — x).

Now suppose there exists a y # x such that wg(y) =
wog(D — y). Without loss of generality we may assume
that y <x. From PM and CN we know that h(w) = L([w,,
w |D)) is a continuous increasing function of w. Now, A(0)
= 0 by U (if w = 0, all the weight is at LEFT) and h(w,)
= x, by the definition of L. Hence, by the intermediate
value theorem there must be a w' € [0, w,] such that
h(w') = y. Thus, L([w,, w’ |D]) = y. Hence, w,g(y) =
w'g(D — y). By the assumption about y this means that w’
= w,. Hence, L([w;, w, |[D]) = y, ie., L is not single
valued, a contradiction. [ ]

The next proposition is needed to show that g is integra-
ble.

Proposition 5. The function g is strictly increasing.

Proof. Suppose not. Then 3 s; < s, such that g(s;) =
9(s,). Suppose first that g(s;) = g(s,) = w, say. Then, by
Proposition 3 and definition of g

L([w, wi|s; +5,]) = (s1 +5,)/2.

As g(s,) = g(s,) it follows that wg(s,) = wg(s, + s, — 5}),
which implies by Proposition 4 that L locates at distance s,
from LEFT. As L is single valued, we conclude that s, =
(s; + 5,)/2, ie., s; = 55, a contradiction.

Suppose now that g(s;) > g(s,). We can assume that
9(s,) # 0, because g(s,) = 0 for some s, > 0 would violate
U (because all the weight would be at the point at distance
1 + s, from LEFT). Consider the simple customer set [w,
1ls; + s,] where w = g(s;)/g(s2) > 1. Now, wg(s,) =
g(s1). So, by Proposition 4, L([w, 1|s; + s,]) = s, > (s, +
$5)/2 = L([1, 1|s; + s5]), which violates PM. This proves
the result. []

Proposition 6. For all simple customer sets [w,, w, |D] 3
an nondecreasing, nonnegative, differentiable, strictly con-
vex function f(x) = [§ g(t)dt such that:

L([wy, wa |[D]) = argmin {w,f(x) + wof(D — x):
x €0, D]}.

Proof. As g is strictly increasing we know that f(x) =
Jb g(t)dt exists and is nonnegative, nondecreasing, differ-
entiable, and strictly convex (see, for example, Theorems
36 and 45 of Clapham 1973). The x that minimizes w, f(x)

+ w,f(D — x) is unique and must satisfy (here f’ is the
derivative of f):

wif' (x) —wyf'(D—x)=0

>w19(x) =wyg9(D —x),

= by Proposition 4 that L([w;, w, |[D]) = x. [
Proposition 7. Let L be any location rule that satisfies TI,

CS, PM and CN. Then, 3 a nonnegative, differentiable,
nondecreasing, strictly convex function f such that:

L([S, w(S)]) = argmin [ {w(y:S) f(d(x, y)):
yESHx€eT],

for all customer sets [S, w(S)].

Proof. Fix an L that satisfies TI, CS, PM, and CN. From
Proposition 6 we know that 3 an appropriate function f
such that:

L([wy, w, |D]) = arg min [w,f(x) + w,f(D — x)
|x € [0, D]].

Fix a tree T and customer set [S, w(S)]. Let z = arg min
[ZA{w(y:S) f(d(x, y)): y € S} x € T]. For each component
Cof T\z let

rC) =2 {w(y:S)f(d(y, z))y € CN S}

What we will do is partition the components of T \z into
two sets A and B, with possibly one component being ‘split’
between them. The partition is obtained from the solution
of the following linear program:

min A,
A= {r(C)u(C): C acomponent of T \z},
A= > {r(C)[1 — u(C)]: C acomponent of T \z},

0 <u(C) =< 1 for each component C of T\ z.

Since the linear program has two constraints, there exists
an optimal solution with at most one of the u(C)s being
fractional. Let K be the component corresponding to this
fractional variable. Furthermore, in an optimal solution

= (1/2) 2, {r(C): C a component of T\ z}.
Also,
> {r(C)u(C): C acomponent of T\ z}
= > {r(C)[1 — u(C)]: C acomponent of T\ z}.
We define two sets A and B as follows:
A={C: u(C) =1},
B ={C: u(C) = 0}.
Hence,
> {r(C): C € A} + u(K)r(K)
= > {r(C): C € B} + (1 — u(K))r(K).



Even though 4 and B are sets of components, we will treat
them as sets of points. For example, a point x will be in A4,
if x is in a component C that is in A4.

Also, the sets A and B will both be nonempty. Suppose
not. Clearly, at least one of them must be nonempty. Let A
be nonempty. Then all components except K must be in 4.
Hence:

> A{r(C): C € A} + u(K)r(K) = (1 — u(K))r(K).

(If there were no fractional component, this equation
would imply that 3{r(C): C € A} = 0, a contradiction.)
Rewriting this last equation, we deduce that

r(K) = > {r(C): C € A} + 2u(K)r(K)
> > {r(C): C € A},

which contradicts the fact that z is f'-stable with respect to
S.

Let [S, Aw(S)] be the customer set obtained by multiply-
ing each weight in [S, w(5)] by A. By CS (see also Propo-
sition 2)

L[S, aw($)]) = L[S, w(S)D),

and arg min [S{Aw(y:S)fd(x, y)):y € S} x € T] =
arg min [Z{w(y:8)f(d(x,y)):y € S} x € T] = =

Let S\z = {x},x;, ..., x} and w(x;:S) = w; for 1 <j <
k. For each x, € A and x, € B define S,, to be the
customer set formed by assigning a weight of w, w, f'(d(x,,
z)) at x, and a weight of w, w,f"(d(x,, z)) at x,. Notice
that S,, is well defined because A and B are nonempty.
Observe that S, is a simple customer set and that:

[wpwof'(d(xq, 2))1f'(d(x, 2))
= [wpw,of' (d(x,, 2))1f (d(xg, 2)).

Hence, by Proposition 4, L(S,,) = z. Notice that this is
true for any pair p and q such that x, € 4 and x, € B. So,
by CS, L(U {S,,:x, € 4,x, € B}) = z.

For each x, € K and x, € B define H,,, to be the customer
set formed by assigning a weight of u(K)w,w, f'(d(x,, z))
at x, and a weight of u(K)w,w, f'(d(x,, z)) at x,. Notice
that H,, is a simple customer set and by Proposition 4,
L(H,,) =z

For each x, € K and x, € A4 define G, to be the customer
set formed by assigning a weight of [1 — u(K)w,w, f (d(x,,
z)) at x, and a weight of [1 — w(K)]w,w, f'(d(x,, 2)) at x,.
Notice that G, is a simple customer set and by Proposi-
tion 4, L(G,,) = z.

From consistency, it follows that the rule L assigns to
the customer set

I ={G,:x, €K, x, €EB}
U{Hp:x, EK, x, € B}
U{Spe:x, EA, x; € B},
the location z.
We now show that the total weight assigned to a point

X, in the set IT is Aw,. Suppose first that x, is in 4. Then
the weight that is assigned to it is
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Table 1
Proposition Axioms Used
Proposition 2 CS and CN
Proposition 4 TI, CS, CN, and PM
Proposition 5 TI and PM
Proposition 7 CS

> wow,f'(d(x,, z)):x, € B}

+ 2 {[1 = u(K)Iw,w,f (d(x,, 2)):x, € K}
=w, > {wof' (d(xq, 2)):xqg € B} + wp[1 — u(K)]r(K)
= wp[E {r(C): Ce B} +[1 —u(K)]r(K)] = Aw),.

A similar argument applies when x,, is in B and K. Thus, if
w(z:S) = 0, IT = [S, aw(S)]. Hence L([S, Aw(S)]) = z, i.e,,
L[S, w(S)]) = z. If w(z:S) > 0 then, by U, L([z, Aw(z:S)])
= z. So, by consistency

LTI U [z, w(z:8)]) =z.
However,
[S, aw(S)]=1T U [z, Aw(S, 2)],

thus L([S, w(S)]) =z. [T

To show where each axiom is explicitly used in the proof
of the propositions, see Table I. Proposition 6 is not listed
because it relies on the earlier propositions. Proposition 3
relies only on TI. Finally, all statements about simple cus-
tomer sets make use of TI.

POSSIBLE EXTENSIONS

In this section we discuss some of the obstacles that must
be surmounted in order to generalize the result to arbi-
trary graphs. In moving from trees to arbitrary graphs, one
must relax the requirement that L([S, w(S)]) is single val-
ued. To see why, take as our underlying graph an equilat-
eral triangle with a single customer at each corner. The
symmetry inherent in this structure ensures that for each
point there is another that “looks” just like it. This elimi-
nates a location rule that is single valued. Thus, the state-
ment of the axioms needs to be modified. As we have
mentioned earlier, this is possible. For example, in the
continuity axiom we would impose Hausdorff continuity.
In the case of trees, the argument presented here is easily
extended to deal with this possibility, but there are many
technicalities having to do with existence and uniqueness
of functions and integrals. These technicalities multiply
when one moves from trees to general graphs.

Even if these purely technical issues can be finessed,
there is another hurdle to be cleared. That is, Proposition
1 does not hold for general graphs. This proposition can be
interpreted as a kind of local optimality implies global
optimality theorem and is related to the fact that the dis-
tance functions d(x, y) are convex (Dearing et al. 1976
show that this convexity property holds if and only if the
underlying network is a tree). The reader will recall that
we made heavy use of this. In effect we showed that the
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axioms implied a location that satisfied the local optimality
conditions and then invoked Proposition 1 to complete the
proof. The theory of variational inequalities tells us that
such theorems hold whenever the underlying space has a
fixed point property. Certainly trees have such a property
(this follows from a fixed point theorem of Eilenberg and
Montgomery 1946), but general graphs do not (consider
the function that rotates every point on a cycle one radian
to the right). Absent a (nonaxiomatic) characterization of
the appropriate class of locations, further research is
needed.
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