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Abstract. In the multi-view regression problem, we have a regression
problem where the input variable (which is a real vector) can be par-
titioned into two different views, where it is assumed that either view
of the input is sufficient to make accurate predictions — this is essen-
tially (a significantly weaker version of) the co-training assumption for
the regression problem.
We provide a semi-supervised algorithm which first uses unlabeled data
to learn a norm (or, equivalently, a kernel) and then uses labeled data
in a ridge regression algorithm (with this induced norm) to provide the
predictor. The unlabeled data is used via canonical correlation analysis
(CCA, which is a closely related to PCA for two random variables) to
derive an appropriate norm over functions. We are able to character-
ize the intrinsic dimensionality of the subsequent ridge regression prob-
lem (which uses this norm) by the correlation coefficients provided by
CCA in a rather simple expression. Interestingly, the norm used by the
ridge regression algorithm is derived from CCA, unlike in standard ker-
nel methods where a special apriori norm is assumed (i.e. a Banach space
is assumed). We discuss how this result shows that unlabeled data can
decrease the sample complexity.

1 Introduction

Extracting information relevant to a task in an unsupervised (or semi-supervised)
manner is one of the fundamental challenges in machine learning — the underly-
ing question is how unlabeled data can be used to improve performance. In the
“multi-view” approach to semi-supervised learning [Yarowsky, 1995, Blum and
Mitchell, 1998], one assumes that the input variable x can be split into two dif-
ferent “views” (x(1), x(2)), such that good predictors based on each view tend to
agree. Roughly speaking, the common underlying multi-view assumption is that
the best predictor from either view has a low error — thus the best predictors
tend to agree with each other.

There are many applications where this underlying assumption is applicable.
For example, object recognition with pictures form different camera angles — we
expect a predictor based on either angle to have good performance. One can even
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consider multi-modal views, e.g. identity recognition where the task might be
to identify a person with one view being a video stream and the other an audio
stream — each of these views would be sufficient to determine the identity. In
NLP, an example would be a paired document corpus, consisting of a document
and its translation into another language. The motivating example in Blum and
Mitchell [1998] is a web-page classification task, where one view was the text in
the page and the other was the hyperlink structure.

A characteristic of many of the multi-view learning algorithms [Yarowsky,
1995, Blum and Mitchell, 1998, Farquhar et al., 2005, Sindhwani et al., 2005,
Brefeld et al., 2006] is to force agreement between the predictors, based on either
view. The idea is to force a predictor, h(1)(·), based on view one to agree with
a predictor, h(2)(·), based on view two, i.e. by constraining h(1)(x(1)) to usually
equal h(2)(x(2)). The intuition is that the complexity of the learning problem
should be reduced by eliminating hypothesis from each view that do not agree
with each other (which can be done using unlabeled data).

This paper studies the multi-view, linear regression case: the inputs x(1) and
x(2) are real vectors; the outputs y are real valued; the samples ((x(1), x(2)), y)
are jointly distributed; and the prediction of y is linear in the input x. Our first
contribution is to explicitly formalize a multi-view assumption for regression.
The multi-view assumption we use is a regret based one, where we assume that
the best linear predictor from each view is roughly as good as the best linear
predictor based on both views. Denote the (expected) squared loss of a prediction
function g(x) to be loss(g). More precisely, the multi-view assumption is that

loss(f (1))− loss(f) ≤ ε

loss(f (2))− loss(f) ≤ ε

where f (ν) is the best linear predictor based on view ν ∈ {1, 2} and f is the
best linear predictor based on both views (so f (ν) is a linear function of x(ν)

and f is a linear function of x = (x(1), x(2))). This assumption implies that
(only on average) the predictors must agree (shown in Lemma 1). Clearly, if the
both optimal predictors f (1) and f (2) have small error, then this assumption is
satisfied, though this precondition is not necessary. This (average) agreement
is explicitly used in the “co-regularized” least squares algorithms of Sindhwani
et al. [2005], Brefeld et al. [2006], which directly constrain such an agreement in
a least squares optimization problem.

This assumption is rather weak in comparison to previous assumptions [Blum
and Mitchell, 1998, Dasgupta et al., 2001, Abney, 2004]. Our assumption can be
viewed as weakening the original co-training assumption (for the classification
case). First, our assumption is stated in terms of expected errors only and implies
only expected approximate agreement (see Lemma 1). Second, our assumption
is only in terms of regret — we do not require that the loss of any predictor
be small. Lastly, we make no further distributional assumptions (aside from a
bounded second moment on the output variable), such as the commonly used,
overly-stringent assumption that the distribution of the views be conditionally
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independent given the label [Blum and Mitchell, 1998, Dasgupta et al., 2001,
Abney, 2004]. In Balcan and Blum [2006], they provide a compatibility notion
which also relaxes this latter assumption, though it is unclear if this compatibility
notion (defined for the classification setting) easily extends to the assumption
above.

Our main result provides an algorithm and an analysis under the above multi-
view regression assumption. The algorithm used can be thought of as a ridge
regression algorithm with regularization based on a norm that is determined by
canonical correlation analysis (CCA). Intuitively, CCA [Hotelling, 1935] is an
unsupervised method for analyzing jointly distributed random vectors. In our
setting, CCA can be performed with the unlabeled data.

We characterize the expected regret of our multi-view algorithm, in compar-
ison to the best linear predictor, as a sum of a bias and a variance term: the bias
is 4ε so it is small if the multi-view assumption is good; and the variance is d

n ,
where n is the sample size and d is the intrinsic dimensionality which we show
to be the sum of the squares of the correlation coefficients provided by CCA.
The notion of intrinsic dimensionality we use is the related to that of Zhang
[2005], which provides a notion of intrinsic dimensionality for kernel methods.

An interesting aspect to our setting is that no apriori assumptions are made
about any special norm over the space of linear predictions, unlike in kernel meth-
ods which apriori impose a Banach space over predictors. In fact, our multi-view
assumption is co-ordinate free — the assumption is stated in terms of the best
linear predictor for the given linear subspaces, which has no reference to any co-
ordinate system. Furthermore, no apriori assumptions about the dimensionality
of our spaces are made — thus being applicable to infinite dimensional methods,
including kernel methods. In fact, kernel CCA methods have been developed in
Hardoon et al. [2004].

The remainder of the paper is organized as follows. Section 2 formalizes our
multi-view assumption and reviews CCA. Section 3 presents the main results,
where the bias-variance tradeoff and the intrinsic dimensionality are charac-
terized. The Discussion expands on a number of points. The foremost issue ad-
dressed is how the multi-view assumption, with unlabeled data, could potentially
allow a significant reduction in the sample size. Essentially, in the high (or infi-
nite) dimensional case, the multi-view assumption imposes a norm which could
coincide with a much lower intrinsic dimensionality. In the Discussion, we also
examine two related multi-view learning algorithms: the SVM-2K algorithm of
Farquhar et al. [2005] and the co-regularized least squares regression algorithm
of Sindhwani et al. [2005].

2 Preliminaries

This first part of this section presents the multi-view regression setting and for-
malizes the multi-view assumption. As is standard, we work with a distribution
D(x, y) over input-output pairs. To abstract away the difficulties of analyzing
the use of a random unlabeled set sampled from D(x), we instead assume that
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the second order statistics of x are known. The transductive setting and the
fixed design setting (which we discuss later in Section 3) are cases where this
assumption is satisfied. The second part of this section reviews CCA.

2.1 Regression with Multiple Views

Assume that the input space X is a subset of a real linear space, which is of either
finite dimension (i.e. X ⊂ Rd) or countably infinite dimension. Also assume that
each x ∈ X is in `2 (i.e. x is a squared summable sequence). In the multi-view
framework, assume each x has the form x = (x(1), x(2)), where x(1) and x(2)

are interpreted as the two views of x. Hence, x(1) is an element of a real linear
space X(1) and x(2) is in a real linear space X(2) (and both x(1) and x(2) are in
`2). Conceptually, we should think of these spaces as being high dimensional (or
countably infinite dimensional).

We also have outputs y that are in R, along with a joint distribution D(x, y)
over X ×R. We assume that the second moment of the output is bounded by 1,
i.e. E[y2|x] ≤ 1 — it is not required that y itself be bounded. No boundedness
assumptions on x ∈ X are made, since these assumptions would have no impact
on our analysis as it is only the subspace defined by X that is relevant.

We also assume that our algorithm has knowledge of the second order statis-
tics of D(x), i.e. we assume that the covariance matrix of x is known. In both
the transductive setting and the fixed design setting, such an assumption holds.
This is discussed in more detail in Section 3.

The loss function considered for g : X → R is the average squared error.
More formally,

loss(g) = E
[
(g(x)− y)2

]
where the expectation is with respect to (x, y) sampled from D. We are also
interested in the losses for predictors, g(1) : X(1) → R and g(2) : X(2) → R,
based on the different views, which are just loss(g(ν)) for ν ∈ {1, 2}.

The following assumption is made throughout the paper.

Assumption 1 (Multi-View Assumption) Define L(Z) to be the space of linear
mappings from a linear space Z to the reals and define:

f (1) = argming∈L(X(1))loss(g)

f (2) = argming∈L(X(2))loss(g)
f = argming∈L(X)loss(g)

which exist since X is a subset of `2. The multi-view assumption is that

loss(f (ν))− loss(f) ≤ ε

for ν ∈ {1, 2}.

Note that this assumption makes no reference to any coordinate system or
norm over the linear functions. Also, it is not necessarily assumed that the losses,
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themselves are small. However, if loss(f (ν)) is small for ν ∈ {1, 2}, say less than
ε, then it is clear that the above assumption is satisfied.

The following Lemma shows that the above assumption implies that f (1) and
f (2) tend to agree on average.

Lemma 1. Assumption 1 implies that:

E
(
f (1)(x(1))− f (2)(x(2))

)2

≤ 4ε

where the expectation is with respect to x sampled from D.

The proof is provided in the Appendix. As mentioned in the Introduction,
this agreement is explicitly used in the co-regularized least squares algorithms
of Sindhwani et al. [2005], Brefeld et al. [2006].

2.2 CCA and the Canonical Basis

A useful basis is that provided by CCA, which we define as the canonical basis.

Definition 1. Let B(1) be a basis of X(1) and B(2) be a basis of X(2). Let
x

(ν)
1 , x

(ν)
2 , . . . be the coordinates of x(ν) in B(ν). The pair of bases B(1) and B(2)

are the canonical bases if the following holds (where the expectation is with re-
spect to D):

1. Orthogonality Conditions:

E[x(ν)
i x

(ν)
j ] =

{
1 if i = j
0 else

2. Correlation Conditions:

E
[
x

(1)
i x

(2)
j

]
=

{
λi if i = j
0 else

where, without loss of generality, it is assumed that 1 ≥ λi ≥ 0 and that

1 ≥ λ1 ≥ λ2 ≥ . . .

The i-th canonical correlation coefficient is defined as λi.

Roughly speaking, the joint covariance matrix of x = (x(1), x(2)) in the canon-
ical basis has a particular structured form: the individual covariance matrices of
x(1) and x(2) are just identity matrices and the cross covariance matrix between
x(1) and x(2) is diagonal. CCA can also be specified as an eigenvalue problem 3

(see Hardoon et al. [2004] for review).
3 CCA finds such a basis is as follows. The correlation coefficient between two real

values (jointly distributed) is defined as corr(z, z′) = E[zz′]√
E[z2]E[z′2]

Let Πax be the

projection operator, which projects x onto direction a. The first canonical basis
vectors b

(1)
1 ∈ B(1) and b

(2)
1 ∈ B(2) are the unit length directions a and b which

maximize corr(Πax(1), Πbx
(2)) and the corresponding canonical correlation coeffi-

cient λ1 is this maximal correlation. Inductively, the next pair of directions can be
found which maximize the correlation subject to the pair being orthogonal to the
previously found pairs.
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3 Learning

Now let us assume we have observed a training sample T = {(x(ν)
m , ym)}n

m=1 of
size n from a view ν, where the samples drawn independently from D. We also
assume that our algorithm has access to the covariance matrix of x, so that the
algorithm can construct the canonical basis.

Our goal is to construct an estimator f̂ (ν) of f (ν) — recall f (ν) is the best
linear predictor using only view ν — such that the regret

loss(f̂ (ν))− loss(f (ν))

is small.

Remark 1. (The Transductive and Fixed Design Setting) There are two natural
settings where this assumption of knowledge about the second order statistics
of x holds — the random transductive case and the fixed design case. In both
cases, X is a known finite set. In the random transductive case, the distribution
D is assumed to be uniform over X, so each xm is sampled uniformly from X
and each ym is sampled from D(y|xm). In the fixed design case, assume that
each x ∈ X appears exactly once in T and again ym is sampled from D(y|xm).
The fixed design case is commonly studied in statistics and is also referred to
as signal reconstruction.4 The covariance matrix of x is clearly known in both
cases.

3.1 A Shrinkage Estimator (via Ridge Regression)

Let the representation of our estimator f̂ (ν) in the canonical basis B(ν) be

f̂ (ν)(x(ν)) =
∑

i

β̂
(ν)
i x

(ν)
i (1)

where x
(ν)
i is the i-th coordinate in B(ν). Define the canonical shrinkage estimator

of β̂(ν) as:

β̂
(ν)
i = λiÊ[xiy] ≡ λi

n

∑
m

x
(ν)
m,iym (2)

Intuitively, the shrinkage by λi down-weights directions that are less correlated
with the other view. In the extreme case, this estimator ignores the uncorrelated
coordinates, those where λi = 0. The following remark shows how this estimator
has a natural interpretation in the fixed design setting — it is the result of ridge
regression with a specific norm (induced by CCA) over functions in L(X(ν)).

4 In the fixed design case, one can view each ym = f(xm)+η, where η is 0 mean noise

so f(xm) is the conditional mean. After observing a sample {(x(ν)
m , ym)}|X|

m=1 for all
x ∈ X (so n = |X|), the goal is to reconstruct f(·) accurately.
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Remark 2. (Canonical Ridge Regression). We now specify a ridge regression al-
gorithm for which the shrinkage estimator is the solution. Define the canonical
norm for a linear function in L(X(ν)) as follows: using the representation of f̂ (ν)

in B(ν) as defined in Equation 1, the canonical norm of f̂ (ν) is defined as:

||f̂ (ν)||CCA =

√∑
i

1− λi

λi

(
β̂

(ν)
i

)2

(3)

where we overload notation and write ||f̂ (ν)||CCA = ||β̂(ν)||CCA. Hence, functions
which have large weights in the less correlated directions (those with small λi)
have larger norms. Equipped with this norm, the functions in L(X(ν)) define a
Banach space. In the fixed design setting, the ridge regression algorithm with
this norm chooses the β̂(ν) which minimizes:

1
|X|

|X|∑
m=1

(
ym − β̂(ν) · x(ν)

m

)2

+ ||β̂(ν)||2CCA

Recall, that in the fixed design setting, we have a training example for each
x ∈ X, so the sum is over all x ∈ X.

It is straightforward to show (by using orthogonality) that the estimator
which minimizes this loss is the canonical shrinkage estimator defined above.
In the more general transductive case, it is not quite this estimator, since the
sampled points {x(ν)

m }m may not be orthogonal in the training sample (they are
only orthogonal when summed over all x ∈ X). However, in this case, we expect
that the estimator provided by ridge regression is approximately equal to the
shrinkage estimator.

We now state the first main theorem.

Theorem 1. Assume that E[y2|x] ≤ 1 and that Assumption 1 holds. Let f̂ (ν) be
the estimator constructed with the canonical shrinkage estimator (Equation 2)
on training set T . For ν ∈ 1, 2, then

ET [loss(f̂ (ν))]− loss(f (ν)) ≤ 4ε +
∑

i λ2
i

n

where expectation is with respect to the training set T sampled according to Dn.

We comment on obtaining high probability bounds in the Discussion. The
proof (presented in Section 3.3) shows that the 4ε results from the bias in the
algorithm and

P
i λ2

i

n results from the variance. It is natural to interpret
∑

i λ2
i

as the intrinsic dimensionality.
Note that Assumption 1 implies that:

ET [loss(f̂ (ν))]− loss(f) ≤ 5ε +
∑

i λ2
i

n

where the comparison is to the best linear predictor f over both views.
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Remark 3. (Intrinsic Dimensionality) Let β̂(ν) be a linear estimator in the vector
of sampled outputs, Y = (y1, y2, . . . ym). Note that the previous thresholded
estimator is such a linear estimator (in the fixed design case). We can write
β̂(ν) = PY where P is a linear operator. Zhang [2005] defines tr(PT P ) as the
intrinsic dimensionality, where tr(·) is the trace operator. This was motivated
by the fact that in the fixed design setting the error drops as tr(P T P )

n , which
is bounded by d

n in a finite dimensional space. Zhang [2005] then goes on to
analyze the intrinsic dimensionality of kernel methods in the random design
setting (obtaining high probability bounds). In our setting, the sum

∑
i λ2

i is
precisely this trace, as P is a diagonal matrix with entries λi.

3.2 A (Possibly) Lower Dimensional Estimator

Consider the thresholded estimator:

β̂
(ν)
i =

{
Ê[xiy] if λi ≥ 1−

√
ε

0 else
(4)

where again Ê[xiy] is the empirical expectation 1
n

∑
m x

(ν)
m,iym. This estimator

uses an unbiased estimator of β
(ν)
i for those i with large λi and thresholds to 0

for those i with small λi. Hence, the estimator lives in a finite dimensional space
(determined by the number of λi which are greater than 1−

√
ε).

Theorem 2. Assume that E[y2|x] ≤ 1 and that Assumption 1 holds. Let d be
the number of λi for which λi ≥ 1 −

√
ε. Let f̂ (ν) be the estimator constructed

with the threshold estimator (Equation 4) on training set T . For ν ∈ 1, 2, then

ET [loss(f̂ (ν))]− loss(f (ν)) ≤ 4
√

ε +
d

n

where expectation is with respect to the training set T sampled according to Dn.

Essentially, the above increases the bias to 4
√

ε and (potentially) decreases
the variance. Such a bound may be useful if we desire to explicitly keep β̂(ν)

in a lower dimensional space — in contrast, the explicit dimensionality of the
shrinkage estimator could be as large as |X|.

3.3 The Bias-Variance Tradeoff

This section provides lemmas for the proofs of the previous theorems. We char-
acterize the bias-variance tradeoff in this error analysis. First, a key technical
lemma is useful, for which the proof is provided in the Appendix.
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Lemma 2. Let the representation of the best linear predictor f (ν) (defined in
Assumption 1) in the canonical basis B(ν) be

f (ν)(x(ν)) =
∑

i

β
(ν)
i x

(ν)
i (5)

Assumption 1 implies that ∑
i

(1− λi)
(
β

(ν)
i

)2

≤ 4ε

for ν ∈ {1, 2}.

This lemma shows how the weights (of an optimal linear predictor) cannot
be too large in coordinates with small canonical correlation coefficients. This is
because for those coordinates with small λi, the corresponding βi must be small
enough so that the bound is not violated. This lemma provides the technical
motivation for our algorithms.

Now let us review some useful properties of the square loss. Using the repre-
sentations of f (ν) and f defined in Equations 1 and 5, a basic fact for the square
loss with linear predictors is that

loss(f̂ (ν))− loss(f (ν)) = ||β̂(ν) − β(ν)||22

where ||x||2 =
√∑

i x2
i . The expected regret can be decomposed as follows:

ET

[
||β̂(ν) − β(ν)||22

]
= ||ET [β̂(ν)]− β(ν)||22 + ET

[
||β̂(ν) − ET [β̂(ν)]||22

]
(6)

= ||ET [β̂(ν)]− β(ν)||22 +
∑

i

Var(β̂(ν)
i ) (7)

where the first term is the bias and the second is the variance.
The proof of Theorems 1 and 2 follow directly from the next two lemmas.

Lemma 3. (Bias-Variance for the Shrinkage Estimator) Under the precondi-
tions of Theorem 1, the bias is bounded as:

||ET [β̂(ν)]− β(ν)||22 ≤ 4ε

and the variance is bounded as:∑
i

Var(β̂(ν)
i ) ≤

∑
i λ2

i

n

Proof. It is straightforward to see that:

β
(ν)
i = E[xiy]

which implies that
ET [β̂(ν)

i ] = λiβ
(ν)
i



10

Hence, for the bias term, we have:

||ET [β̂(ν)]− β(ν)||22 =
∑

i

(1− λi)2(β
(ν)
i )2

≤
∑

i

(1− λi)(β
(ν)
i )2

≤ 4ε

We have for the variance

Var(β̂(ν)
i ) =

λ2
i

n
Var(x(ν)

i y)

≤ λ2
i

n
E[(x(ν)

i y)2]

=
λ2

i

n
E[(x(ν)

i )2E[y2|x]]

≤ λ2
i

n
E[(x(ν)

i )2]

=
λ2

i

n

The proof is completed by summing over i. ut

Lemma 4. (Bias-Variance for the Thresholded Estimator) Under the precondi-
tions of Theorem 2, the bias is bounded as:

||ET [β̂(ν)]− β(ν)||22 ≤ 4
√

ε

and the variance is bounded as:

∑
i

Var(β̂(ν)
i ) ≤ d

n

Proof. For those i such that λi ≥ 1−
√

ε,

ET [β̂(ν)
i ] = β

(ν)
i

Let j be the index at which the thresholding begins to occur, i.e. it is the smallest
integer such that λj < 1−

√
ε. Using that for i ≥ j, we have 1 < (1− λj)/

√
ε ≤
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(1− λi)/
√

ε, so the bias can be bounded as follows:

||ET [β̂(ν)]− β(ν)||22 =
∑

i

(
ET [β̂(ν)

i ]− β
(ν)
i

)2

=
∑
i≥j

(β(ν)
i )2

≤
∑
i≥j

1− λi√
ε

(β(ν)
i )2

≤ 1√
ε

∑
i

(1− λi)(β
(ν)
i )2

≤ 4
√

ε

where the last step uses Lemma 2.
Analogous to the previous proof, for each i < j, we have:

Var(β̂(ν)
i ) ≤ 1

and there are d such i. ut

4 Discussion

Why does unlabeled data help? Theorem 1 shows that the regret drops at a
uniform rate (down to ε). This rate is the intrinsic dimensionality,

∑
i λ2

i , divided
by the sample size n. Note that this intrinsic dimensionality is only a property
of the input distribution. Without the multi-view assumption (or working in
the single view case), the rate at which our error drops is governed by the
extrinsic dimensionality of x, which could be large (or countably infinite), making
this rate very slow without further assumptions. It is straightforward to see
that the intrinsic dimensionality is no greater than the extrinsic dimensionality
(since λi is bounded by 1), though it could be much less. The knowledge of the
covariance matrix of x allows us to compute the CCA basis and construct the
shrinkage estimator which has the improved converge rate based on the intrinsic
dimensionality. Such second order statistical knowledge can be provided by the
unlabeled data, such as in the transductive and fixed design settings.

Let us compare to a ridge regression algorithm (in the single view case),
where one apriori chooses a norm for regularization (such as an RKHS norm
imposed by a kernel). As discussed in Zhang [2005], this regularization governs
the bias-variance tradeoff. The regularization can significantly decrease the vari-
ance — the variance drops as d

n where d is a notion of intrinsic dimensionality
defined in Zhang [2005]. However, the regularization also biases the algorithm
to predictors with small norm — there is no apriori reason that there exists
a good predictor with a bounded norm (under the pre-specified norm). In or-
der to obtain a reasonable convergence rate, it must also be the case that the
best predictor (or a good one) has a small norm under our pre-specified norm.
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In contrast, in the multi-view case, the multi-view assumption implies that the
bias is bounded — recall that Lemma 3 showed that the bias was bounded by
4ε. Essentially, our proof shows that the bias induced by using the special norm
induced by CCA (in Equation 3) is small.

Now it may be the case that we have apriori knowledge of what a good norm
is. However, learning the norm (or learning the kernel) is an important open
question. The multi-view setting provides one solution to this problem.

Can the bias be decreased to 0 asymptotically? Theorem 1 shows that
the error drops down to 4ε for large n. It turns out that we can not drive this
bias to 0 asymptotically without further assumptions, as the input space could
be infinite dimensional.

On obtaining high probability bounds. Clearly, stronger assumptions are
needed than just a bounded second moment to obtain high probability bounds
with concentration properties. For the fixed design setting, if y is bounded, then it
is straightforward to obtain high probability bounds through standard Chernoff
arguments. For the random transductive case, this assumption is not sufficient —
this is due to the additional randomness from x. Note that we cannot artificially
impose a bound on x as the algorithm only depends on the subspace spanned
by X, so upper bounds have no meaning — note the algorithm scales X such
that it has an identity covariance matrix (e.g. E[x2

i ] = 1). However, if we have a
higher moment bound, say on the ratio of E[x4

i ]/E[x2
i ], then one could use the

Bennett bound can be used to obtain data dependent high probability bounds,
though providing these is beyond the scope of this paper.

Related work. The most closely related multi-view learning algorithms are the
SVM-2K algorithm of Farquhar et al. [2005] and the co-regularized least squares
regression algorithm of Sindhwani et al. [2005]. Roughly speaking, both of these
algorithms try to find two hypothesis — h(1)(·), based on view one, and h(2)(·),
based on view two — which both have low training error and which tend to
agree with each other on unlabeled error, where the latter condition is enforced
by constraining h(1)(x(1)) to usually equal h(2)(x(2)) on an unlabeled data set.

The SVM-2K algorithm considers a classification setting and the algorithm
attempts to force agreement between the two hypothesis with slack variable style
constraints, common to SVM algorithms. While this algorithm is motivated by
kernel CCA and SVMs, the algorithm does not directly use kernel CCA, in
contrast to our algorithm, where CCA naturally provides a coordinate system.
The theoretical analysis in [Farquhar et al., 2005] argues that the Rademacher
complexity of the hypothesis space is reduced due to the agreement constraint
between the two views.

The multi-view approach to regression has been previously considered in
Sindhwani et al. [2005]. Here, they specify a co-regularized least squares regres-
sion algorithm, which is a ridge regression algorithm with an additional penalty
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term which forces the two predictions, from both views, to agree. A theoretical
analysis of this algorithm is provided in Rosenberg and Bartlett [2007], which
shows that the Rademacher complexity of the hypothesis class is reduced by
forcing agreement.

Both of these previous analysis do not explicitly state a multi-view assump-
tion, so it hard to directly compare the results. In our setting, the multi-view re-
gret is explicitly characterized by ε. In a rather straightforward manner (without
appealing to Rademacher complexities), we have shown that the rate at which
the regret drops to 4ε is determined by the intrinsic dimensionality. Further-
more, both of these previous algorithms use an apriori specified norm over their
class of functions (induced by an apriori specified kernel), and the Rademacher
complexities (which are used to bound the convergence rates) depend on this
norm. In contrast, our framework assumes no norm — the norm over functions
is imposed by the correlation structure between the two views.

We should also note that their are close connections to those unsupervised
learning algorithms which attempt to maximize relevant information. The Imax
framework of Becker and Hinton [1992], Becker [1996] attempts to maximize in-
formation between two views x(1) and x(2), for which CCA is a special case (in a
continuous version). Subsequently, the information bottleneck provided a frame-
work for capturing the mutual information between two signals [Tishby et al.,
1999]. Here, the goal is to compress a signal x(1) such that it captures relevant
information about another signal x(2). The framework here is unsupervised as
there is no specific supervised task at hand. For the case in which the joint distri-
bution of x(1) and x(2) is Gaussian, Chechik et al. [2003] completely characterizes
the compression tradeoffs for capturing the mutual information between these
two signals — CCA provides the coordinate system for this compression.

In our setting, we do not explicitly care about the mutual information be-
tween x(1) and x(2) — performance is judged only by performance at the task
at hand, namely our loss when predicting some other variable y. However, as
we show, it turns out that these unsupervised mutual information maximizing
algorithms provide appropriate intuition for multi-view regression, as they result
in CCA as a basis.
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5 Appendix

We now provide the proof of Lemma 1

Proof. (of Lemma 1). Let β(ν) be the weights for f (ν) and let β be the weights
of f in some basis. Let β(ν) · x(ν) and β · x be the representation of f (ν) and f
in this basis. By Assumption 1

ε ≥ E(β(ν) · x(ν) − y)2 − E(β · x− y)2

= E(β(ν) · x(ν) − β · x + β · x− y)2 − E(β · x− y)2

= E(β(ν) · x(ν) − β · x)2 − 2E[(β(ν) · x(ν) − β · x)(β · x− y)]
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Now the “normal equations” for β (the first derivative conditions for the optimal
linear predictor β) states that for each i:

E[xi(β · x− y)] = 0

where xi is the i component of x. This implies that both

E[β · x(β · x− y)] = 0
E[β(ν) · x(ν)(β · x− y)] = 0

where the last equation follows since x(ν) has components in x.
Hence,

E[(β(ν) · x(ν) − β · x)(β · x− y)] = 0

and we have shown that:

E(β(1) · x(1) − β · x)2 ≤ ε

E(β(2) · x(2) − β · x)2 ≤ ε

The triangle inequality states that:

E(β(1) · x(1) − β(2) · x)2

≤
(√

E(β(1) · x(1) − β · x)2 +
√

E(β(2) · x(2) − β · x)2
)2

≤ (2
√

ε)2

which completes the proof. ut
Below is the proof of Lemma 2.

Proof. (of Lemma 2) From Lemma 1, we have:

4ε ≥ E
[
(β(1) · x(1) − β(2) · x(2))2

]
=

∑
i

(
(β(1)

i )2 + (β(2)
i )2 − 2λiβ

(1)
i β

(2)
i

)
=

∑
i

(
(1− λi)(β

(1)
i )2 + (1− λi)(β

(2)
i )2 + λi((β

(1)
i )2 + (β(2)

i )2 − 2β
(1)
i β

(2)
i )

)
=

∑
i

(
(1− λi)(β

(1)
i )2 + (1− λi)(β

(2)
i )2 + λi(β

(1)
i − β

(2)
i )2

)
≥

∑
i

(
(1− λi)(β

(1)
i )2 + (1− λi)(β

(2)
i )2

)
≥

∑
i

(1− λi)(β
(ν)
i )2

where the last step holds for either ν = 1 or ν = 2. ut


