

Linear methods for large data

Dean Foster

Amazon

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- by Halko, Martinsson, and Tropp.
- It is my current favorite paper.
- Today, l'll be applying it to a several problems in ML / statistics
problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx A A^{\top} M$
problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx A A^{\top} M$

Construction A is constructed by:
(1) create a random $m \times k$ matrix Ω (iid normals)
(2) compute $M \Omega$
(3) Compute thin SVD of result: $U D V^{\top}=M \Omega$
(1) $A=U$

FAST MATRIX REGRESSIONS

Toy problem: $p \ll n$:

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)
- But we should be unimpressed.

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)
- But we should be unimpressed.
- Alternative fast (but stupid) method:
- Do least squares on a sub-sample of size n / p
- Runs in time np.
- Same accuracy as the fast methods.

A better fast regression

- Create "sub-sample" $\hat{X} \equiv A A^{\top} X$
- Estimate

$$
\hat{\beta}=\left(\hat{X}^{\top} \hat{X}\right)^{-1} X^{\top} Y
$$

- (Mahoney also subsampled Y and hence lost accuracy.)

New method: Fast and accurate

- As fast as only reading the data ($n p$ time)
- As accurate as using all the data (NIPS 2013)

New method: Fast and accurate

- As fast as only reading the data ($n p$ time)
- As accurate as using all the data (NIPS 2013)

What about $p \gg n$?

New method: Fast and accurate

- As fast as only reading the data ($n p$ time)
- As accurate as using all the data (NIPS 2013)

What about $p \gg n$?

- Sub-sample the other side of the X matrix
- Generates a PCAs regression
- Sub-sample columns almost works
- Fast matrix multiply fixes the "almost" (NIPS 2013)
- Aside: yields fast ridge regression also (JMLR 2013)

What about $p \approx n$?

- If p is almost as large as n, then subsampling doesn't provide any speed up
- To sub-sample enough to be accurate leaves the problem large
- So best we could do would end up with a regularized answer

What about $p \approx n$?

- But, if $p<n$, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)

What about $p \approx n$?

- But, if $p<n$, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)
- Aside: Isn't gradient decent is a boring numerical analysis concept from Newton's age?
- But, if $p<n$, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)
- Aside: Isn't gradient decent is a boring numerical analysis concept from Newton's age?
- It has lately become the coolest thing in ML
- For example, in Dec 2017, it solved 4 amazingly hard problems
- No I won't tell you what they were since that would destract me from the rest of the talk:
- Faces
- Go
- Automatic programming (aka tuning NMT)
- Speech synthesis

Outline:
(1) Least squares regression (we just finished).
(2) Sparse Linear Regression (up next).
(3) Fast CCAs.
(4) Fast HMMs.
(5) Fast parsing.
(6) Fast clustering.
:
(Zeno will kick in somewhere in this series)
All are connected to the fast matrix decomposition.

(2) Sparse linear regression

VIF regression

- Most variables are useless
- Why not only regress on the variables which provide value?
- Called stepwise regression
- Often given fancier names (i.e. model selection)
- Buzz words: AIC, BIC, RIC, IC, you get the pattern
- I'll discuss an algorithm called streaming feature selection

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
- Can be done via sampling
- Can be done use fast matrix methods
- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
- Can be done via sampling
- Can be done use fast matrix methods
- Nice statistical properties:
- For sub-modular problems, this will generate almost as good an estimator as best subsets. (2013)
- provides mFDR protection (2008)

Capacity

(3) CCA for Semi-supervised data

CCA: Usual data table for data mining

$$
\left[\begin{array}{c}
Y \\
(n \times 1)
\end{array}\right]\left[\begin{array}{c}
X \\
(n \times p)
\end{array}\right]
$$

with $p \gg n$
m rows of unlabeled data:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p \\
\end{array}\right]
$$

m rows of unlabeled data, and two sets of equally useful X 's:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p
\end{array}\right]\left[\begin{array}{c}
Z \\
(n+m) \times p \\
\end{array}\right]
$$

With: $m \gg n$

- Named entity recognition
- $Y=$ person / place
- $\mathrm{X}=$ spelling of the name itself
- $\mathrm{Z}=$ words before target
- Modeling words in a sentence
- $\mathrm{Y}=$ Current word
- $\mathrm{X}=$ previous words
- Z = future words
- Sitcom speaker identification:
- $\mathrm{Y}=$ which character is speaking
- $\mathrm{X}=$ video
- $Z=$ sound
- We will call these the multi-view setup
- Theory: Using the top few CCA directions is almost as good as the best linear model. (2006-14)

(4) HMMs

HMM with states h_{1}, h_{2}, and h_{3} which generate observations x_{1}, x_{2}, and x_{3}.

The Y's are our eigenwords.

The Y 's are our eigenwords.

$$
\operatorname{Pr}\left(x_{t}, \ldots, x_{1}\right)=1^{\top} T \operatorname{diag}\left(O U^{\top} y_{t}\right) \cdots T \operatorname{diag}\left(O U^{\top} y_{1}\right) \pi
$$

- Leads to "Eigenwords" a competitor of Google's more popular word2vec (2006-14)
- (5) Extends to trees:
- (5) Extends to trees:
- We can extend the HMM material to dependency parsing
- Same sample complexity (2012)
- Raw MST Parser is 91.8% accurate
- Adding eigenwords: 2.6% error reduction
- eigenwords plus Re-ranking: 7.3\% error reduction
- Extended to constituent parsing (2014)
- (5) Extends to trees:
- We can extend the HMM material to dependency parsing
- Same sample complexity (2012)
- Raw MST Parser is 91.8% accurate
- Adding eigenwords: 2.6% error reduction
- eigenwords plus Re-ranking: 7.3\% error reduction
- Extended to constituent parsing (2014)
- (6) Clustering:

Theorem (with Hsu, Kakade, Liu, Anandkumar, NIPS 2012)

Maximizing $E\left(\mu^{\top} X\right)^{4}$ will find the natural coordinate system for LDA.

- These new fast matrix methods are easy to program.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

- These new fast matrix methods are easy to program.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

Thanks!

(For slides: google "dean foster" and search "linear.")

COAUTHORS

Coauthors (Last updated 2015)

		U Penn	Elsewhere
Stat	faculty	Edward George	Tong Zhang (Rutgers)
		Robert Stine	Sham Kakade (UW)
	students	Dongyu Lin (ATT) Jordan Rodu (CMU) 	Kory Johnson
	Yichao Lu (Amazon)		

Coauthors (Last updated 2015)

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If $n>p^{3}$, then the algorithm defined by:

- Let $m=\sqrt{n}$
- Pull out a sub-sample of size m from X 's and call it Z.
- Let $\hat{\beta} \equiv\left(Z^{\top} Z\right)^{-1} X^{\top} Y$
then the CPU time is $O(n p)$ and accuracy is as good as the usually estimator.

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)
If $p>n$, then using a SRHT on the columns followed by regression will take $O(n p \log (p))$ time and lose a constant factor on the statistical accuracy.

Theorem (with Sham Kakade, Parmaveer Dhillion, Lyle Ungar)

A ridge regression can be quickly approximated by regressing on the top principal components. In particular, for a ridge parameter λ using components with singular values larger than λ will be within a factor of 4 of the ridge estimator on statistical accuracy. (JMLR 2013)

Fast algorithm when p is large

Problem: Regress $Y X$, where X has $p \approx n$. Hence we can't simply subsample the X since it will still be too large.
(1) Find a low rank (of $\operatorname{dim} k$) approximation to X, call this matrix P.
(2) Fit Y to this approximation and compute the residuals R
(Run a gradient least squares regression of R on both P and X.

This method can be thought of as a preconditioned gradient method. Yichao Lu and I (2015) showed that this has good performance for a wide variety of singular values for X.

Streaming feature selection was introduced in JMLR 2006 (with Zhou, Stine and Ungar).
Let $W(j)$ be the "alpha wealth" at time j. Then for a series of p-values p_{j}, we can define:

$$
W(j)-W(j-1)=\left\{\begin{array}{cl}
\omega & \text { if } p_{j} \leq \alpha_{j}, \tag{1}\\
-\alpha_{j} /\left(1-\alpha_{j}\right) & \text { if } p_{j}>\alpha_{j} .
\end{array}\right.
$$

Theorem

(Foster and Stine, 2008, JRSS-B) An alpha-investing rule governed by (1) with initial alpha-wealth $W(0) \leq \alpha \eta$ and pay-out $\omega \leq \alpha$ controls $m F D R_{\eta}$ at level α.
(Foster, Dongyu Lin, 2011) VIF regression approximates a streaming feature selection method with speed $O(n p)$.

Eigenwords to estimate PERMA

See paper for the predictions of the other 4:

- Positive emotion (aglow, awesome, bliss, ...),
- Engagement (absorbed, attentive, busy, ...),
- Relationships (admiring, agreeable, ...),
- Meaning (aspire, belong, ...)
- Achievement (accomplish, achieve, attain, ...).
(P. Dhillon, J. Rodu, D. Foster and L. Ungar., ICML 2012)

We can compute a CCA between X and Z to find a good subspace to use to predict Y.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated

We can compute a CCA between X and Z to find a good subspace to use to predict Y.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms (2014)

We can compute a CCA between X and Z to find a good subspace to use to predict Y.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms (2014)

Results:

- Theory: Using the top few CCA directions is almost as good as the best linear model. (2006)
- We can use this to generate Eigenwords (ICML 2012)
(This is work in progress.) Yichao Lu has two current papers on this. The first shows how to use fast PCA and gradient decent to do a fast regression. The second shows how to use this successively to do a fast CCA. Kakade, Hsu and Zhang also have a fast CCA method, but it suffers from getting a less accurate answer than statistically optimal.

Theorem

(Foster, Johnson, Stine, 2013) If the R-squared in a regression is submodular (aka subadditive) then a streaming feature selection algorithm will find an estimator whose out risk is within a factor of e/(e-1) of the optimal risk.

HMM Results

- Sample complexity (2010)
- Empirical results in NLP
- Named Entity Recognition (CoNLL '03 shared task)
- Chunking (CoNLL '00 shared task)
- Eigenwords added signal to state of the art systems for both tasks
- (2011)
- Neural data (2013)

This is the first theorem we did for HMMs. We now have many other versions for parsing and extensions to continuous data.

Theorem (with Rodu, Ungar)

Let X_{t} be generated by an $m \geq 2$ state HMM. Suppose we are given a U which has the property that range $(O) \subset$ range (U) and $\left|U_{i j}\right| \leq 1$. Using N independent triples, we have

$$
N \geq \frac{128 m^{2}(2 t+3)^{2}}{\epsilon^{2} \Lambda^{2} \sigma_{m}^{4}} \log \left(\frac{2 m}{\delta}\right) \cdot \overbrace{\frac{\epsilon^{2} /(2 t+3)^{2}}{(\sqrt[2 t+3]{1+\epsilon}-1)^{2}}}^{\approx 1}
$$

implies that

$$
1-\epsilon \leq\left|\frac{\widehat{\operatorname{Pr}}\left(x_{1}, \ldots, x_{t}\right)}{\operatorname{Pr}\left(x_{1}, \ldots, x_{t}\right)}\right| \leq 1+\epsilon
$$

holds with probability at least $1-\delta$.

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Estimator is least squares plus a penalty of:

$$
\sum_{i} \frac{1-\lambda_{i}}{\lambda_{i}} \beta_{i}^{2}
$$

Where λ_{i} 's are the correlations

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Multivew property α is the multiview property:

$$
\begin{aligned}
\sigma_{x}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha) \\
\sigma_{z}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha)
\end{aligned}
$$

- 5α is the bias
- $\frac{\sum \lambda_{i}^{2}}{n}$ is variance
- Results on 2 NLP sequence labeling problems: NER (CoNLL '03 shared task) and Chunking (CoNLL '00 shared task).
- Trained on ~ 65 million tokens of unlabeled text in a few hours!

Relative reduction in error over state-of-the-art:

Embedding/Model	NER	Chunking
C\&W	15.0%	18.8%
HLBL	19.5%	20.2%
Brown	12.1%	18.7%
Ando+Zhang	5.6%	14.6%

"Multi-View Learning of Word Embeddings via CCA," NIPS 2011.

In EMNLP 2012 (Rodu, Ungar, Dhillon, Collins) we extended the HMM results to dependency parsing.

We have a review paper: "Spectral Learning of Latent-Variable PCFGs," with Cohen, Stratos, Collins, and Ungar, submitting to JMLR.

Figure 1: Correlation of raw observations, binned at 10 second bins

Neural data: reduced dimension

Figure 2: Correlations among reduced dimensional observations $k=10$

Neural data: state estimate

Figure 3: Correlations among the states of the system as time progresses $\mathrm{k}=10$

