

Linear methods for large data

Dean Foster

Amazon

This is a talk about some other people's paper

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- by Halko, Martinsson, and Tropp.
- It is my current favorite paper.
- Today, I'll be applying it to a several problems in ML / statistics

Basic method

problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx AA^{\top}M$

Basic method

problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx AA^{\top}M$

Construction A is constructed by:

- **1** create a random $m \times k$ matrix Ω (iid normals)
- \bigcirc compute $M\Omega$
- **③** Compute thin SVD of result: $UDV^{\top} = M\Omega$
- $\mathbf{0} A = U$

FAST MATRIX REGRESSIONS

Toy problem: $p \ll n$:

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

But we should be unimpressed.

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

- But we should be unimpressed.
- Alternative fast (but stupid) method:
 - Do least squares on a sub-sample of size n/p
 - Runs in time np.
 - Same accuracy as the fast methods.

A better fast regression

- Create "sub-sample" $\hat{X} \equiv AA^{\top}X$
- Estimate

$$\hat{\beta} = (\hat{X}^{\top}\hat{X})^{-1}X^{\top}Y$$

(Mahoney also subsampled Y and hence lost accuracy.)

New method: Fast and accurate

- As fast as only reading the data (np time)
- As accurate as using all the data (NIPS 2013)

New method: Fast and accurate

- As fast as only reading the data (np time)
- As accurate as using all the data (NIPS 2013)

What about $p \gg n$?

New method: Fast and accurate

- As fast as only reading the data (np time)
- As accurate as using all the data (NIPS 2013)

What about $p \gg n$?

- Sub-sample the other side of the *X* matrix
- Generates a PCAs regression
- Sub-sample columns almost works
- Fast matrix multiply fixes the "almost" (NIPS 2013)
- Aside: yields fast ridge regression also (JMLR 2013)

- If p is almost as large as n, then subsampling doesn't provide any speed up
 - To sub-sample enough to be accurate leaves the problem large
 - So best we could do would end up with a regularized answer

- But, if p < n, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)

- But, if p < n, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)
- Aside: Isn't gradient decent is a boring numerical analysis concept from Newton's age?

- But, if p < n, we might want not want to do regularized regression
- Yichao Lu and I combined these random matrix methods with gradient decent to find a good solution. (UAI 2014)
- Aside: Isn't gradient decent is a boring numerical analysis concept from Newton's age?
 - It has lately become the coolest thing in ML
 - For example, in Dec 2017, it solved 4 amazingly hard problems
 - No I won't tell you what they were since that would destract me from the rest of the talk:
 - Faces
 - Go
 - Automatic programming (aka tuning NMT)
 - Speech synthesis

Outline:

- Least squares regression (we just finished).
- Sparse Linear Regression (up next).
- Fast CCAs.
- Fast HMMs.
- Fast parsing.
- Fast clustering.

:

(Zeno will kick in somewhere in this series)

All are connected to the fast matrix decomposition.

(2) Sparse linear regression

VIF regression

- Most variables are useless
- Why not only regress on the variables which provide value?
- Called stepwise regression
 - Often given fancier names (i.e. model selection)
 - Buzz words: AIC, BIC, RIC, IC, you get the pattern
- I'll discuss an algorithm called streaming feature selection

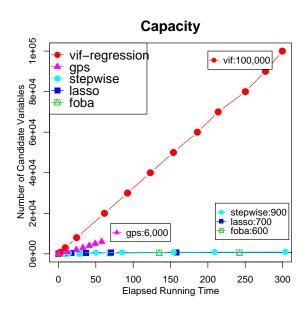
VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
 - Can be done via sampling
 - Can be done use fast matrix methods

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
 - Can be done via sampling
 - Can be done use fast matrix methods
- Nice statistical properties:
 - For sub-modular problems, this will generate almost as good an estimator as best subsets. (2013)
 - provides mFDR protection (2008)

VIF speed comparison



(3) CCA for Semi-supervised data

CCA: Usual data table for data mining

$$\left[\begin{array}{c} Y \\ (n \times 1) \end{array}\right] \left[\begin{array}{c} X \\ (n \times p) \end{array}\right]$$

with $p \gg n$

With unlabeled data

m rows of unlabeled data:

$$\left[\begin{array}{c} Y \\ n \times 1 \end{array}\right] \qquad \left[\begin{array}{c} X \\ (n+m) \times p \end{array}\right]$$

With alternative X's

m rows of unlabeled data, and two sets of equally useful X's:

$$\begin{bmatrix} Y \\ n \times 1 \end{bmatrix} \begin{bmatrix} X \\ (n+m) \times p \end{bmatrix} \begin{bmatrix} Z \\ (n+m) \times p \end{bmatrix}$$

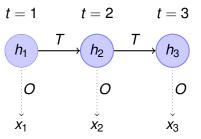
With: $m \gg n$

Examples

- Named entity recognition
 - Y = person / place
 - X = spelling of the name itself
 - Z = words before target
- Modeling words in a sentence
 - Y = Current word
 - X = previous words
 - Z = future words
- Sitcom speaker identification:
 - Y = which character is speaking
 - X = video
 - Z = sound
- We will call these the multi-view setup
- Theory: Using the top few CCA directions is almost as good as the best linear model. (2006-14)

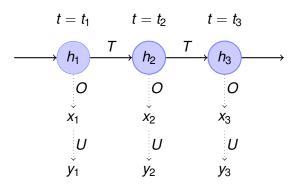
(4) HMMs

Hidden Markov Model



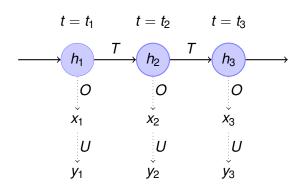
HMM with states h_1 , h_2 , and h_3 which generate observations x_1 , x_2 , and x_3 .

Hidden Markov Model



The *Y*'s are our eigenwords.

Hidden Markov Model



The Y's are our eigenwords.

$$Pr(x_t, ..., x_1) = \mathbf{1}^T T \operatorname{diag}(OU^T y_t) \cdots T \operatorname{diag}(OU^T y_1) \pi$$

 Leads to "Eigenwords" a competitor of Google's more popular word2vec (2006-14) etc

• (5) Extends to trees:

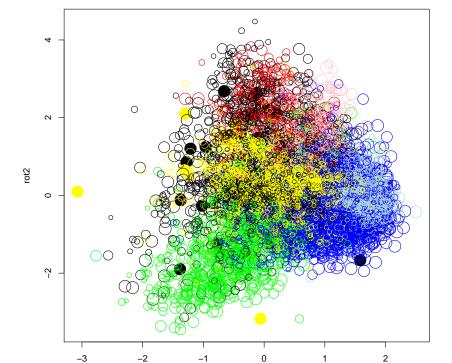
etc

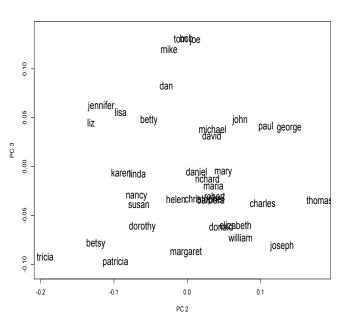
- (5) Extends to trees:
 - We can extend the HMM material to dependency parsing
 - Same sample complexity (2012)
 - Raw MST Parser is 91.8% accurate
 - Adding eigenwords: 2.6% error reduction
 - eigenwords plus Re-ranking: 7.3% error reduction
 - Extended to constituent parsing (2014)

- (5) Extends to trees:
 - We can extend the HMM material to dependency parsing
 - Same sample complexity (2012)
 - Raw MST Parser is 91.8% accurate
 - Adding eigenwords: 2.6% error reduction
 - eigenwords plus Re-ranking: 7.3% error reduction
 - Extended to constituent parsing (2014)
- (6) Clustering:

Theorem (with Hsu, Kakade, Liu, Anandkumar, NIPS 2012)

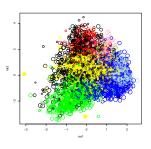
Maximizing $E(\mu^{\top}X)^4$ will find the natural coordinate system for LDA.





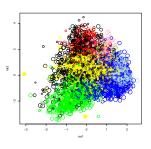
Conclusions

- These new fast matrix methods are easy to program.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!



Conclusions

- These new fast matrix methods are easy to program.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!



Thanks!

(For slides: google "dean foster" and search "linear.")

Coauthors (Last updated 2015)

U Penn

		0.0	2.00111010
Stat	faculty	Edward George	Tong Zhang (Rutgers)
		Robert Stine	Sham Kakade (UW)
•	students	Dongyu Lin (ATT)	
		Jordan Rodu (CMU)	
		Kory Johnson	
		Yichao Lu (Amazon)	
CS	faculty	Lyle Ungar	Michael Collins (Google)
			Daniel Hsu (Columbia)
	students	Parmaveer Dhillon	Shay Cohen (Columbia)
		Jing Zhou (real world)	Karl Stratos (Columbia \rightarrow ?)

Elsewhere

Coauthors (Last updated 2015)

		U Penn		Elsewhere					
Stat	faculty	Edward G	Tong Zhang (Rutgers)						
		Robert Stine		Sham Kakade (UW)					
	students	Dongyu Lin (ATT)							
		Jordan Rodu (CMU)							
		Kory Johi							
		Yichao Lu (A							
CS	faculty	Lyle Ungar		Michael Collins (Google)					
	-			Daniel Hsu (Columbia)					
	students	Parmaveer Dhillon		Shay Cohen (Columbia)_					
		Jing Zhou (real world)		Karl Stratos (Columbia $\rightarrow 15$)					
								'14	
								'14	
						'11	'12	'13	
						'11	'12	'13	
'94	'00'	'04	'06	'08	'10	'11	'12	'13	

Fast Regressions

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If $n > p^3$, then the algorithm defined by:

- Let $m = \sqrt{n}$
- Pull out a sub-sample of size m from X's and call it Z.
- Let $\hat{\beta} \equiv (Z^{\top}Z)^{-1}X^{\top}Y$

then the CPU time is O(np) and accuracy is as good as the usually estimator.

Fast Principal components regressions

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If p > n, then using a SRHT on the columns followed by regression will take $O(np \log(p))$ time and lose a constant factor on the statistical accuracy.

PCR is close to ridge regression

Theorem (with Sham Kakade, Parmaveer Dhillion, Lyle Ungar)

A ridge regression can be quickly approximated by regressing on the top principal components. In particular, for a ridge parameter λ using components with singular values larger than λ will be within a factor of 4 of the ridge estimator on statistical accuracy. (JMLR 2013)

Fast algorithm when *p* is large

Problem: Regress Y X, where X has $p \approx n$. Hence we can't simply subsample the X since it will still be too large.

- Find a low rank (of dim k) approximation to X, call this matrix P.
- $oldsymbol{\circ}$ Fit Y to this approximation and compute the residuals R
- Run a gradient least squares regression of R on both P and X.

This method can be thought of as a preconditioned gradient method. Yichao Lu and I (2015) showed that this has good performance for a wide variety of singular values for X.

mFDR for streaming feature selection

Streaming feature selection was introduced in *JMLR* 2006 (with Zhou, Stine and Ungar).

Let W(j) be the "alpha wealth" at time j. Then for a series of p-values p_j , we can define:

$$W(j) - W(j-1) = \begin{cases} \omega & \text{if } p_j \le \alpha_j, \\ -\alpha_j/(1-\alpha_j) & \text{if } p_j > \alpha_j. \end{cases}$$
 (1)

Theorem

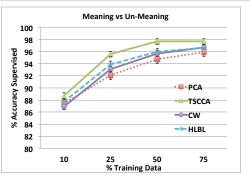
(Foster and Stine, 2008, JRSS-B) An alpha-investing rule governed by (1) with initial alpha-wealth $W(0) \le \alpha \eta$ and pay-out $\omega \le \alpha$ controls mFDR $_{\eta}$ at level α .

VIF regression

Theorem

(Foster, Dongyu Lin, 2011) VIF regression approximates a streaming feature selection method with speed O(np).

Eigenwords to estimate PERMA



See paper for the predictions of the other 4:

- Positive emotion (aglow, awesome, bliss, ...),
- Engagement (absorbed, attentive, busy, ...),
- Relationships (admiring, agreeable, ...),
- Meaning (aspire, belong, ...)
- Achievement (accomplish, achieve, attain, ...).
- (P. Dhillon, J. Rodu, D. Foster and L. Ungar., ICML 2012)

Using a CCA between X and Z to generate features

We can compute a CCA between *X* and *Z* to find a good subspace to use to predict *Y*.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated

Using a CCA between X and Z to generate features

We can compute a CCA between X and Z to find a good subspace to use to predict Y.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms (2014)

Using a CCA between X and Z to generate features

We can compute a CCA between X and Z to find a good subspace to use to predict Y.

- CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms (2014)

Results:

- Theory: Using the top few CCA directions is almost as good as the best linear model. (2006)
- We can use this to generate Eigenwords (ICML 2012)

Fast CCA method

(This is work in progress.) Yichao Lu has two current papers on this. The first shows how to use fast PCA and gradient decent to do a fast regression. The second shows how to use this successively to do a fast CCA. Kakade, Hsu and Zhang also have a fast CCA method, but it suffers from getting a less accurate answer than statistically optimal.

Submodular

Theorem

(Foster, Johnson, Stine, 2013) If the R-squared in a regression is submodular (aka subadditive) then a streaming feature selection algorithm will find an estimator whose out risk is within a factor of e/(e-1) of the optimal risk.

HMM Results

- Sample complexity (2010)
- Empirical results in NLP
 - Named Entity Recognition (CoNLL '03 shared task)
 - Chunking (CoNLL '00 shared task)
 - Eigenwords added signal to state of the art systems for both tasks
 - (2011)
- Neural data (2013)

HMM theorem

This is the first theorem we did for HMMs. We now have many other versions for parsing and extensions to continuous data.

Theorem (with Rodu, Ungar)

Let X_t be generated by an $m \ge 2$ state HMM. Suppose we are given a U which has the property that $range(O) \subset range(U)$ and $|U_{ij}| \le 1$. Using N independent triples, we have

$$N \geq \frac{128 \textit{m}^2 (2t+3)^2}{\epsilon^2 \, \Lambda^2 \sigma_m^4} \log \left(\frac{2\textit{m}}{\delta}\right) \cdot \overbrace{\frac{\epsilon^2/(2t+3)^2}{\left(\frac{2t+3}{\sqrt{1+\epsilon}}-1\right)^2}}^{2t+3}$$

implies that

$$1 - \epsilon \le \left| \frac{\widehat{\mathsf{Pr}}(x_1, \dots, x_t)}{\mathsf{Pr}(x_1, \dots, x_t)} \right| \le 1 + \epsilon$$

holds with probability at least $1 - \delta$.

CCAs

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$\mathsf{Risk}(\hat{eta}) \leq \left(5\alpha + rac{\sum \lambda_i^2}{n}\right)\sigma^2$$

CCAs

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$\mathsf{Risk}(\hat{eta}) \leq \left(5\alpha + rac{\sum \lambda_i^2}{n}\right)\sigma^2$$

Estimator is least squares plus a penalty of:

$$\sum_{i} \frac{1 - \lambda_{i}}{\lambda_{i}} \beta_{i}^{2}$$

Where λ_i 's are the correlations

CCAs

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption

$$\mathsf{Risk}(\hat{eta}) \leq \left(5\alpha + rac{\sum \lambda_i^2}{n}\right)\sigma^2$$

Multivew property α is the multiview property:

$$\begin{array}{rcl} \sigma_{x}^{2} & \leq & \sigma_{x,z}^{2}(1+\alpha) \\ \sigma_{z}^{2} & \leq & \sigma_{x,z}^{2}(1+\alpha) \end{array}$$

- 5α is the bias
- $\frac{\sum \lambda_i^2}{n}$ is variance

Results on ConLL task

- Results on 2 NLP sequence labeling problems: NER (CoNLL '03 shared task) and Chunking (CoNLL '00 shared task).
- \bullet Trained on \sim 65 million tokens of unlabeled text in a few hours!

Relative reduction in error over state-of-the-art:

Embedding/Model	NER	Chunking
C&W	15.0%	18.8%
HLBL	19.5%	20.2%
Brown	12.1%	18.7%
Ando+Zhang	5.6%	14.6%

"Multi-View Learning of Word Embeddings via CCA," *NIPS* 2011.

Dependency parsing

In EMNLP 2012 (Rodu, Ungar, Dhillon, Collins) we extended the HMM results to dependency parsing.

Review paper on parsing

We have a review paper: "Spectral Learning of Latent-Variable PCFGs," with Cohen, Stratos, Collins, and Ungar, submitting to *JMLR*.

Neural data: raw

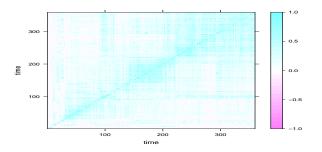


Figure 1: Correlation of raw observations, binned at 10 second bins

Neural data: reduced dimension

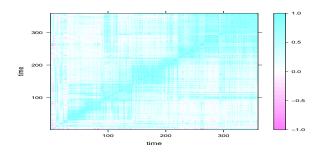


Figure 2: Correlations among reduced dimensional observations k=10

Neural data: state estimate

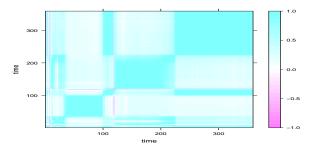


Figure 3: Correlations among the states of the system as time progresses $k{=}10$