

Linear methods for large data

Dean Foster

Amazon

This is a talk about some other people's paper

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- by Halko, Martinsson, and Tropp.
- It is my current favorite paper.
- Today, I'll be applying it to a linear regression.

Basic method

problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx AA^{\top}M$

Basic method

problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx AA^{\top}M$

Construction A is constructed by:

- **1** create a random $m \times k$ matrix Ω (iid normals)
- \bigcirc compute $M\Omega$
- **③** Compute thin SVD of result: $UDV^{\top} = M\Omega$
- $\mathbf{0} A = U$

FAST MATRIX REGRESSIONS

Toy problem: $p \ll n$:

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

But we should be unimpressed.

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
 - Generates provably accurate results.
 - Instead of np^2 time, it runs in np time.
 - This is fast! (I.e. as fast as reading the data.)

- But we should be unimpressed.
- Alternative fast (but stupid) method:
 - Do least squares on a sub-sample of size n/p
 - Runs in time np.
 - Same accuracy as the fast methods.

A better fast regression

• Create "sub-sample" $\hat{X} \equiv AA^{\top}X$ and estimate

$$\hat{\beta} = (\hat{X}^{\top}\hat{X})^{-1}X^{\top}Y$$

A better fast regression

• Create "sub-sample" $\hat{X} \equiv AA^{\top}X$ and estimate

$$\hat{\beta} = (\hat{X}^{\top}\hat{X})^{-1}X^{\top}Y$$

- (Mahoney also subsampled Y and hence lost accuracy.)
- New method is fast and accurate (NIPS 2013a)
- What about $p \gg n$?
 - Sub-sample columns almost works
 - Fast matrix approximation fixes the "almost" (NIPS 2013b)
 - Aside: yields fast ridge regression also (JMLR 2013)
- What about $p \approx n$?
 - needs stochastic gradient also. (UAI 2014)

Applications of fast matrix methods:

- Least squares regression (we just finished).
- Sparse Linear Regression (today's talk).
- Fast CCAs.
- Fast HMMs.
- Fast parsing.
- Fast clustering.

Problem statement: L0 regression

Problem:

$$Y = X\beta + \sigma Z$$

using prediction risk $E|\mathbf{X}\beta - \mathbf{X}\hat{\beta}|_2^2$.

• Target risk is $q\sigma^2$ for the correct set of q variables.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log(p)$ yields a risk that is within a $2 \log(p)$ factor of the target.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log(p)$ yields a risk that is within a $2 \log(p)$ factor of the target.

- Also proven by Donoho and Johnstone in the same year.
- The bound is tight.
- The same bound works for Lasso.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log(p)$ yields a risk that is within a $4 \log(p)$ factor of the target.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log(p)$ yields a risk that is within a $4 \log(p)$ factor of the target.

- This bound is also tight: I.e. there are design matrices for which any estimator does this badly.
- Lasso's risk inflation is infinite for bad X's

Machine learning = Statistics + computation

- Naive algorithm takes 2^p time
- Greedy runs fast (takes np² time)
- Called stepwise regression
- How well does it perform?

A success for stepwise regression

Theorem (Natarajan 1995)

Stepwise regression will have a prediction accuracy of at most twice optimal using at most $\approx 18|X^+|_2^2q$ variables.

A success for stepwise regression

Theorem (Natarajan 1995)

Stepwise regression will have a prediction accuracy of at most twice optimal using at most $\approx 18|X^+|_2^2q$ variables.

- The $|X^+|_2$ is a measure of co-linearity.
- The risk inflation is a disaster.
- Suggests three goals:
 - sparse answers
 - accuracy
 - speed

L0 regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$R(\hat{\theta}) \gtrsim \frac{1}{\gamma^2(X)} \sigma^2 q \log(p).$$

Where γ is the RE, a measure of co-linearity.

L0 regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$R(\hat{\theta}) \gtrsim \frac{1}{\gamma^2(X)} \sigma^2 q \log(p).$$

Where γ is the RE, a measure of co-linearity.

 Actual statement is much more complex and involves a version of the assumption that P ≠ NP.

L0 regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$R(\hat{\theta}) \gtrsim \frac{1}{\gamma^2(X)} \sigma^2 q \log(p).$$

Where γ is the RE, a measure of co-linearity.

- Note: No cheating on the dimension.
- What if we let it use 2q variables? Could we get good risk?

L0 regression is VERY hard

Theorem (Foster, Karloff, Thaler 2014)

No algorithm exists which achieves all three of the following goals:

- Runs efficiently (i.e. in polynomial time)
- Runs accurately (i.e. risk inflation < p)
- Returns sparse answer (i.e. $|\hat{\beta}|_0 \ll p$)

What to do?

- Hard problems exist
- So, assume the world is nice and we can get
 - a small model
 - with accurate prediction
 - that runs fast
- Called alpha investing

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
 - Can be done via sampling
 - Can be done use fast matrix methods

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
 - Can be done via sampling
 - Can be done use fast matrix methods
- Nice statistical properties:
 - For sub-modular problems, this will generate almost as good an estimator as best subsets. (2013)
 - provides mFDR protection (2008)

VIF speed comparison

Conclusions

- These new fast matrix methods are easy to prove theorems about.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

Conclusions

- These new fast matrix methods are easy to prove theorems about.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

Thanks!