

Linear methods for large data

Dean Foster

Amazon

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- by Halko, Martinsson, and Tropp.
- It is my current favorite paper.
- Today, l'll be applying it to a linear regression.
problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx A A^{\top} M$
problem Find a low rank approximation to a $n \times m$ matrix M. solution Find a $n \times k$ matrix A such that $M \approx A A^{\top} M$

Construction A is constructed by:
(1) create a random $m \times k$ matrix Ω (iid normals)
(2) compute $M \Omega$
(3) Compute thin SVD of result: $U D V^{\top}=M \Omega$
(1) $A=U$

FAST MATRIX REGRESSIONS

Toy problem: $p \ll n$:

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)
- But we should be unimpressed.

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
- Generates provably accurate results.
- Instead of $n p^{2}$ time, it runs in $n p$ time.
- This is fast! (l.e. as fast as reading the data.)
- But we should be unimpressed.
- Alternative fast (but stupid) method:
- Do least squares on a sub-sample of size n / p
- Runs in time np.
- Same accuracy as the fast methods.

A better fast regression

- Create "sub-sample" $\hat{X} \equiv A A^{\top} X$ and estimate

$$
\hat{\beta}=\left(\hat{X}^{\top} \hat{X}\right)^{-1} X^{\top} Y
$$

A better fast regression

- Create "sub-sample" $\hat{X} \equiv A A^{\top} X$ and estimate

$$
\hat{\beta}=\left(\hat{X}^{\top} \hat{X}\right)^{-1} X^{\top} Y
$$

- (Mahoney also subsampled Y and hence lost accuracy.)
- New method is fast and accurate (NIPS 2013a)
- What about $p \gg n$?
- Sub-sample columns almost works
- Fast matrix approximation fixes the "almost" (NIPS 2013b)
- Aside: yields fast ridge regression also (JMLR 2013)
- What about $p \approx n$?
- needs stochastic gradient also. (UAI 2014)

Applications of fast matrix methods:
(1) Least squares regression (we just finished).
(2) Sparse Linear Regression (today's talk).
(3) Fast CCAs.
(4) Fast HMMs.
(5) Fast parsing.
(6) Fast clustering.

- Problem:

$$
Y=X \beta+\sigma Z
$$

using prediction risk $E|\mathbf{X} \beta-\mathbf{X} \hat{\beta}|_{2}^{2}$.

- Target risk is $q \sigma^{2}$ for the correct set of q variables.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log (p)$ yields a risk that is within a $2 \log (p)$ factor of the target.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log (p)$ yields a risk that is within a $2 \log (p)$ factor of the target.

- Also proven by Donoho and Johnstone in the same year.
- The bound is tight.
- The same bound works for Lasso.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log (p)$ yields a risk that is within a $4 \log (p)$ factor of the target.

Theorem (Foster and George, 1994)

For any orthogonal X matrix, using a penality of $2 \log (p)$ yields a risk that is within a $4 \log (p)$ factor of the target.

- This bound is also tight: I.e. there are design matrices for which any estimator does this badly.
- Lasso's risk inflation is infinite for bad X 's
- Naive algorithm takes 2^{p} time
- Greedy runs fast (takes $n p^{2}$ time)
- Called stepwise regression
- How well does it perform?

Theorem (Natarajan 1995)
Stepwise regression will have a prediction accuracy of at most twice optimal using at most $\approx 18\left|X^{+}\right|_{2}^{2} q$ variables.

Theorem (Natarajan 1995)
Stepwise regression will have a prediction accuracy of at most twice optimal using at most $\approx 18\left|X^{+}\right|_{2}^{2} q$ variables.

- The $\left|X^{+}\right|_{2}$ is a measure of co-linearity.
- The risk inflation is a disaster.
- Suggests three goals:
- sparse answers
- accuracy
- speed

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$
R(\hat{\theta}) \gtrsim \frac{1}{\gamma^{2}(X)} \sigma^{2} q \log (p)
$$

Where γ is the RE, a measure of co-linearity.

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$
R(\hat{\theta}) \gtrsim \frac{1}{\gamma^{2}(X)} \sigma^{2} q \log (p)
$$

Where γ is the RE, a measure of co-linearity.

- Actual statement is much more complex and involves a version of the assumption that $P \neq N P$.

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$
R(\hat{\theta}) \gtrsim \frac{1}{\gamma^{2}(X)} \sigma^{2} q \log (p)
$$

Where γ is the RE, a measure of co-linearity.

- Note: No cheating on the dimension.
- What if we let it use $2 q$ variables? Could we get good risk?

Theorem (Foster, Karloff, Thaler 2014)

No algorithm exists which achieves all three of the following goals:

- Runs efficiently (i.e. in polynomial time)
- Runs accurately (i.e. risk inflation <p)
- Returns sparse answer (i.e. $|\hat{\beta}|_{0} \ll p$)
- Hard problems exist
- So, assume the world is nice and we can get
- a small model
- with accurate prediction
- that runs fast
- Called alpha investing

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
- Can be done via sampling
- Can be done use fast matrix methods
- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression (2006)
- Instead of orthogonalizing each new X, only approximately orthogonalize it. (2011)
- Can be done via sampling
- Can be done use fast matrix methods
- Nice statistical properties:
- For sub-modular problems, this will generate almost as good an estimator as best subsets. (2013)
- provides mFDR protection (2008)

Capacity

- These new fast matrix methods are easy to prove theorems about.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

- These new fast matrix methods are easy to prove theorems about.
- They generate statistically useful results.
- So, read Halko, Martinsson, and Tropp!

Thanks!

