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Preamble

@ | meant to integrate Calibration in with the rest of this
talk—but that didn’t happen.
@ So let me discuss one aspect of Calibration at Amazon.
@ Switching to Chalk technology.
@ Summary:
e Main message: We need to do papers and theory to get
good results!
e Customers (in optimization) complained the forecasts were
too variable
e Bob and I looked at it and found that it was too variable (see
black board) and wrote a paper about it (Arxiv 2021)
e The NN team fixed it by adding an attention layer (Dhruv
and gang, Arxiv 2021)
e This avoided us needing to implement my LP to fix things
(2019 conference paper).



This is a talk about some other people’s paper

“Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix de-
compositions”

@ by Halko, Martinsson, and Tropp.
@ |t USED TO BE my current favorite paper.

@ Today, I'll be applying it to a several problems in ML /
statistics



Basic method

problem Find a low rank approximation to a n x m matrix M.
solution Find a n x k matrix A such that M ~ AA™M



Basic method

problem Find a low rank approximation to a n x m matrix M.
solution Find a n x k matrix A such that M ~ AA™M

Construction A is constructed by:
@ create arandom m x k matrix Q (iid normals)
@ compute MQ

© Compute thin SVD of result: UDVT = MQ
QO A=U



FAST MATRIX REGRESSIONS
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Using random methods for regression

Toy problem: p <« n:
@ Solving least squares: (a la Mahoney)

o Generates provably accurate results.
e Instead of np? time, it runs in np time.
e This is fast! (l.e. as fast as reading the data.)

@ But we should be unimpressed.

@ Alternative fast (but stupid) method:
e Do least squares on a sub-sample of size n/p
e Runs in time np.
@ Same accuracy as the fast methods.



A better fast regression

@ Create “sub-sample” X = AAT X
@ Estimate A o
B=XTX)"'XTY

@ (Mahoney also subsampled Y and hence lost accuracy.)



Fast Regressions

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If n > p3, then the algorithm defined by:
@ Letm=+/n
@ Pull out a sub-sample of size m from X'’s and call it Z.
o letp=(Z2"2)'XTY
then the CPU time is O(np) and accuracy is as good as the
usually estimator.
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@ As fast as only reading the data (np time)
@ As accurate as using all the data (NIPS 2013)
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New method: Fast and accurate

@ As fast as only reading the data (np time)
@ As accurate as using all the data (NIPS 2013)

What about p > n?

@ Sub-sample the other side of the X matrix

@ Generates a PCAs regression

@ Sub-sample columns almost works

@ Fast matrix multiply fixes the “almost” (NIPS 2013)

@ Aside: yields fast ridge regression also (JMLR 2013)



What about p ~ n?

@ If pis almost as large as n, then subsampling doesn'’t
provide any speed up
e To sub-sample enough to be accurate leaves the problem
large
e So best we could do would end up with a regularized
answer



Outline:

@ Least squares regression (we just finished).
© Sparse Linear Regression (up next).

© Fast CCAs.

O Fast HMMs.

@ Fast parsing.

O Fast clustering.

(Zeno will kick in somewhere in this series)

All are connected to the fast matrix decomposition.



(2) Sparse linear regression



VIF regression

@ How do we do alpha investing fast?
@ We need to estimate the t statistics of a new variable

e The partial t-statistic is tiez = tust/v/ VIF.

e We can compute the t-statistic for the simple regression
Xoew (Y — Y) quickly.

o Compute the VIF by subsampling rows of data



VIF speed comparison
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(3) CCA for Semi-supervised data



CCA: Usual data table for data mining

(nx1) (nx p)

with p > n



With unlabeled data

m rows of unlabeled data:

Y X

nx1 (n+m)xp




With alternative X’s

m rows of unlabeled data, and two sets of equally useful X’s:

Y X V4

nx (n+m)xp (n+m)xp

With: m>n



Examples

@ Named entity recognition
e Y = person/ place
e X = spelling of the name itself
e Z = words before target

@ Modeling words in a sentence
e Y = Current word
e X = previous words
e Z = future words

@ Sitcom speaker identification:
e Y = which character is speaking
e X =video
e Z=sound

@ We will call these the multi-view setup



Using a CCA between X and Z to generate features

We can compute a CCA between X and Z to find a good
subspace to use to predict Y.

@ CCA = canonical correlation analysis
@ Finds directions that are most highly correlated



Using a CCA between X and Z to generate features

We can compute a CCA between X and Z to find a good
subspace to use to predict Y.

@ CCA = canonical correlation analysis

@ Finds directions that are most highly correlated

@ Can be solved by doing successive regressions

@ So, we can use our fast regression algorithms (2014)
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CCAs

Let (3 be the Ridge regression estimator with weights induced
by the CCA. Then under the multi-view assumption

2
Risk(5) < <5a + 2N ) o2

n

Estimator is least squares plus a penalty of:

1)

2
N

i

Where \;’s are the correlations



CCAs

Let 3 be the Ridge regression estimator with weights induced
by the CCA. Then under the multi-view assumption

2
Risk(5) < <5a + Z{f’) o?

Multivew property « is the multiview property:

0%
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02 < o2,(1+a)

@ 5¢ is the bias

)2
Z is variance



CCAs

Let 3 be the Ridge regression estimator with weights induced
by the CCA. Then under the multi-view assumption

2
Risk(5) < <5a + 2N ) o2

n

Results:

@ Interpretation: Using the top few CCA directions is almost
as good as the best linear model.

@ We can use this to generate Eigenwords (ICML 2012).



(4) HMMs



Hidden Markov Model

t=1 t=2 =3
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HMM with states hy, ho, and hy which generate observations
X1, Xo, and X3.



Hidden Markov Model
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Hidden Markov Model

t=1t t=1=t t=108
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¥ ye ¥s

The Y’s are our eigenwords.

Pr(X,...,x1) =17 Tdiag(OU" y;) - - - Tdiag(OU " yy )=

@ We called them “Eigenwords”



HMM Results

@ Sample complexity (2010)

@ Empirical results in NLP
e Named Entity Recognition (CoNLL 03 shared task)
@ Chunking (CoNLL 00 shared task)
e Eigenwords added signal to state of the art systems for
both tasks
e (2011)

@ Neural data (2013)



Neural data: raw
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Figure 1: Correlation of raw observations, binned at 10 s ond bins




Neural data: reduced dimension
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Neural data: state estimate
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Figure 3: Correlations among the states of the system as time pro-

gresses k=10



@ (5) Extends to trees:



Parsing

@ (5) Extends to trees:

We can extend the HMM material to dependency parsing
Same sample complexity (2012)

Raw MST Parser is 91.8% accurate

Adding eigenwords: 2.6% error reduction

eigenwords plus Re-ranking: 7.3% error reduction

(]
"]
]
]
("]
e Extended to constituent parsing (2014)



Clustering

Theorem (with Hsu, Kakade, Liu, Anandkumar, NIPS 2012)

Maximizing E(u" X)* will find the natural coordinate system for
LDA.




Clustering

Theorem (with Hsu, Kakade, Liu, Anandkumar, NIPS 2012)

Maximizing E(u" X)* will find the natural coordinate system for
LDA.

@ This allows clustering

@ Don'’t get distracted by tensors! You can'’t really estimate
them with real data.
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Conclusions

@ These new fast matrix methods are easy to program.
@ They generate statistically useful results.
@ So, read Halko, Martinsson, and Tropp!




Conclusions

@ These new fast matrix methods are easy to program.
@ They generate statistically useful results.
@ So, read Halko, Martinsson, and Tropp!

Thanks!
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Fast Principal components regressions

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If p > n, then using a SRHT on the columns followed by

regression will take O(nplog(p)) time and lose a constant factor
on the statistical accuracy.




PCR is close to ridge regression

Theorem (with Sham Kakade, Parmaveer Dhillion, Lyle Ungar)

A ridge regression can be quickly approximated by regressing
on the top principal components. In particular, for a ridge
parameter \ using components with singular values larger than
A will be within a factor of 4 of the ridge estimator on statistical
accuracy. (JMLR 2013)




Fast algorithm when p is large

Problem: Regress Y X, where X has p =~ n. Hence we can’t
simply subsample the X since it will still be too large.

@ Find a low rank (of dim k) approximation to X, call this
matrix P.

@ Fit Y to this approximation and compute the residuals R

© Run a gradient least squares regression of R on both P
and X.
This method can be thought of as a preconditioned gradient
method. Yichao Lu and | (2015) showed that this has good
performance for a wide variety of singular values for X.



mFDR for streaming feature selection

Streaming feature selection was introduced in JMLR 2006 (with
Zhou, Stine and Ungar).

Let W(j) be the “alpha wealth” at time j. Then for a series of
p-values p;, we can define:

w if Pj < Qj
—aj/(1 —aj) ifpj>aj.

(1)

(Foster and Stine, 2008, JRSS-B) An alpha-investing rule
governed by (1) with initial alpha-wealth W(0) < an and
pay-outw < o controls mFDR,, at level c.




VIF regression

(Foster, Dongyu Lin, 2011) VIF regression approximates a
streaming feature selection method with speed O(np).




Eigenwords to estimate PERMA
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See paper for the predictions of the other 4:
@ Positive emotion (aglow, awesome, bliss, . ..),
@ Engagement (absorbed, attentive, busy, .. .),
@ Relationships (admiring, agreeable, ...),
@ Meaning (aspire, belong, ...)
@ Achievement (accomplish, achieve, attain, ...).
(P. Dhillon, J. Rodu, D. Foster and L. Ungar., ICML 2012)



Fast CCA method

(This is work in progress.) Yichao Lu has two current papers on
this. The first shows how to use fast PCA and gradient decent
to do a fast regression. The second shows how to use this
successively to do a fast CCA. Kakade, Hsu and Zhang also
have a fast CCA method, but it suffers from getting a less
accurate answer than statistically optimal.



Submodular

(Foster, Johnson, Stine, 2013) If the R-squared in a regression
is submodular (aka subadditive) then a streaming feature
selection algorithm will find an estimator whose out risk is
within a factor of e/(e — 1) of the optimal risk.




HMM theorem

This is the first theorem we did for HMMs. We now have many
other versions for parsing and extensions to continuous data.

Theorem (with Rodu, Ungar)
Let X; be generated by an m > 2 state HMM. Suppose we are
given a U which has the property that range(O) C range(U)
and |Uj| < 1. Using N independent triples, we have

~1
- 128m? (2t + 3)? " <2m> /2t +3)
= 62 /\20.;177 g (5 ( 2t+3/1 FYe— 1)2

implies that

N

A~

Pr(X1, 500 ,Xt)

—e<
1-e< Pr(X1,...,X;)

<1+e

holds with probability at least1 — 6.




Results on ConLL task

@ Results on 2 NLP sequence labeling problems: NER
(CoNLL ’03 shared task) and Chunking (CoNLL ’00 shared

task).
@ Trained on ~ 65 million tokens of unlabeled text in a few

hours!

Relative reduction in error over state-of-the-art:
Embedding/Model | NER  Chunking

C&W 15.0% 18.8%
HLBL 19.5% 20.2%
Brown 12.1% 18.7%

Ando+Zhang 5.6% 14.6%

“Multi-View Learning of Word Embeddings via CCA,” NIPS
2011.



Dependency parsing

In EMNLP 2012 (Rodu, Ungar, Dhillon, Collins) we extended
the HMM results to dependency parsing.



Review paper on parsing

We have a review paper: “Spectral Learning of Latent-Variable
PCFGs,” with Cohen, Stratos, Collins, and Ungar, submitting to
JMLR.



