Talk 4: Stepwise regression and friends

Dean Foster

Amazon

August 24, 2022

Preamble:Three ways to think about data

Dean Foster

Amazon

Three ways of thinking about data:

- Probabilistic modelling
- Individual sequences
- Information theory
- Key concept: Good models compress the data well.
- Key idea: Describing the model and describing the data can both be done using bits and bytes
- Describing the model:
- Hypothesis test: takes 1 bit to describe the model (point alternative)
- $\theta \in[-M, M]$ takes $\log _{2}(2 M / \sqrt{n})$ bits
- Non-parametric takes creativity to describe the model
- Describing the data:
- Use $\log _{2}\left(P\left(Y_{1}, \ldots, Y_{n} \mid \theta\right)\right)$ bits for discrete distributions
- Use $\log _{2}\left(f\left(Y_{1}, \ldots, Y_{n} \mid \theta\right)\right)$ bits for continuous densities
- Best method is shortest total for model plus data
- Information theory:
- Beating LZ is hard!
- Forces you to think about wild alternatives
- Individual sequences:
- Think about algorithms
- Allows you to ignore the question "Do you believe this model?"
- Probabilistic models:
- Source of inspiration for codes and algorithms!
- minimax lower bounds
- Two sample t-test alone is enough to justify studing models
- Interpretability, Explainablity, partial slopes, etc

Costs of each

- Information theory:
- A trap for the unwary-it pretends to solve all problems
- bit and bytes don't really matter, predictions do!
- (story: Getting sucked down the Kolmogorov complexity well)

Costs of each

- Information theory:
- A trap for the unwary-it pretends to solve all problems
- bit and bytes don't really matter, predictions do!
- (story: Getting sucked down the Kolmogorov complexity well)
- Individual sequence:
- The space of algorithms is huge: most are impossible to analyze
- Hard to tell what "beliefs" are implied by a algorithm
- (story: What no interaction term?)
- Information theory:
- A trap for the unwary-it pretends to solve all problems
- bit and bytes don't really matter, predictions do!
- (story: Getting sucked down the Kolmogorov complexity well)
- Individual sequence:
- The space of algorithms is huge: most are impossible to analyze
- Hard to tell what "beliefs" are implied by a algorithm
- (story: What no interaction term?)
- Probabilistic modelling:
- An optimal answer for a model will not be robust
- Sometimes the world is ugly
- No model captures it well.
- Continuing adding bells and whistles takes time away from looking at data.
- (story: Geographic modeling of demand)

Which is the best?

Ignore everything and run a Neural Net?

Ignore everything and run a Neural Net?

- Know at least a little of each one
- Translate the solution of your problem from one view to another
- If it doesn't make sense-re-think your solution!
- Ideally, it should make sense in all three views
- But, nothing beats simply looking at your data
- Outliers are a problem in all three
- Influential points cause problems everywhere
- Looking at data cures believing something completely false!

Chalk talk: Blackwell approachability

August 24, 2022

Quick introduction to Blackwell approachability

- Original paper is unreadable
- My 1999 version is unreadable
- But the idea is simple

Talk 4: Stepwise regression and friends

Dean Foster

Amazon

- Quite commonly used, but not often studied
- Most statisticians think of it as "evil" or at best useful only to "lazy" scientists
- Quite commonly used, but not often studied
- Most statisticians think of it as "evil" or at best useful only to "lazy" scientists
- But l'm a fan
- This talk will review some of the theoretical results that are known about it
- I'll give some examples of its value in applied problems
- Goal: predict Y
- Inputs: you have millions of X 's that can be used to predict Y
- Most X 's are garbage
- How do you find a small subset of X 's that will predict Y well?
- 20 years ago Bob Stine and I ran a "little" regression (JASA 2004)
- 70,000 features
- 2 million rows
- $Y=$ credit card holder going bankrupt next month
- 20 years ago Bob Stine and I ran a "little" regression (JASA 2004)
- 70,000 features
- 2 million rows
- $Y=$ credit card holder going bankrupt next month
- At the time it caused jaws to drop
- 20 years ago Bob Stine and I ran a "little" regression (JASA 2004)
- 70,000 features
- 2 million rows
- $Y=$ credit card holder going bankrupt next month
- At the time it caused jaws to drop
- Tricks:
- Linear model instead of logistic regression (Fast!)
- Dummy variables for interactions (contain signal)
- Interactions (non-linear structure)
- Bennett's bound to calculate p-values (avoiding over-fitting)
- Stepwise regression!
- Model:

$$
Y_{i} \sim X_{i}^{\top} \beta+\sigma Z_{i}
$$

- Penalized regression:

$$
\widehat{\beta}_{\Pi} \equiv \arg \min _{\widehat{\beta}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \widehat{\beta}\right)^{2}+\Pi \sigma^{2}|\widehat{\beta}|_{0}
$$

- $|\widehat{\beta}|_{0}$ is the number of non-zeros in β
- Model:

$$
Y_{i} \sim X_{i}^{\top} \beta+\sigma Z_{i}
$$

- Penalized regression:

$$
\widehat{\beta}_{\Pi} \equiv \arg \min _{\widehat{\beta}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \widehat{\beta}\right)^{2}+\Pi \sigma^{2}|\widehat{\beta}|_{0}
$$

- $|\widehat{\beta}|_{0}$ is the number of non-zeros in β
- Non-convex problem
- Note: $L 1$ is the convex relaxation of $L 0$, which leads to Lasso.
- Error larger by p / q if we don't do variable selection
- Huge improvement in accuracy is possible
- Precisely:

$$
E\left(\mu_{Y \mid X}-\widehat{Y}_{p}\right)^{2}=\frac{p}{q} \quad E\left(\mu_{Y \mid X}-\widehat{Y}_{q}\right)^{2}
$$

- \widehat{Y}_{p} is best fit using all the variables
- \widehat{Y}_{q} is best fit using only the q correct variables
- But, can we find the right subset?
- Try all subsets to find best fitting subset
- Oops: Slow, and it will say use all the variables
- Try all subsets and penalize by Bonferroni
- $|t|>\sqrt{2 \log (p)}$
- Yes, it is painfully slow. But does it at least find the right subset?

Theorem (F. and George 1994, Donoho and Johnstone 1994)
For any orthogonal X matrix, if $\Pi=2 \log (p)$, then the risk of $\widehat{\beta}_{\Pi}$ is within a $2 \log (p)$ factor of the target.

Theorem (F. and George 1994, Donoho and Johnstone 1994)

For any orthogonal X matrix, if $\Pi=2 \log (p)$, then the risk of $\widehat{\beta}_{\Pi}$ is within a $2 \log (p)$ factor of the target.

- The bound is tight.
- (The same bound works for Lasso.)

Theorem (F. and George 1994,

For any orthogonat X matrix, if $\Pi=2 \log (p)$, then the risk of $\widehat{\beta}_{\Pi}$ is within a $4 \log (p)$ factor of the target.

Theorem (F. and George 1994,

For any orthogonat X matrix, if $\Pi=2 \log (p)$, then the risk of $\widehat{\beta}_{\Pi}$ is within a $4 \log (p)$ factor of the target.

- This bound is also tight
- (Lasso is a disaster in this case.)

Theorem (F. and George 1994,

For any orthogonat X matrix, if $\Pi=2 \log (p)$, then the risk of $\widehat{\beta}_{\Pi}$ is within a $4 \log (p)$ factor of the target.

- So finding the right subset of variables can generate a huge win

Log(Risk Ratio)

- instead of exhaustive search, we can use search
- Greedy runs fast
- Called stepwise regression in statistics
- How well does it perform?
- instead of exhaustive search, we can use search
- Greedy runs fast
- Called stepwise regression in statistics
- How well does it perform?
- For orthogonal problems, it works perfectly
- For many X 's it will work well.
- But, ...

Nasty example for stepwise

\mathbf{Y}	$\mathbf{D 1}$	$\mathbf{D} 2$	$\mathbf{D} 3$	$\mathbf{D 4}$	\ldots	$\mathbf{D n} / \mathbf{2}$	$\mathbf{X 1}$	$\mathbf{X 2}$
1	1	0	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	1	0	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	1	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	1	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	1	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	1	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	0	1	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	0	1	\ldots	0	$+1+\delta$	$-1+\delta$
\vdots								
1	0	0	0	0	\ldots	1	$-1+\delta$	$+1+\delta$
1	0	0	0	0	\ldots	1	$+1+\delta$	$-1+\delta$

Nasty example for stepwise

\mathbf{Y}	D1	D2	D3	D4	\ldots	Dn/2	$\mathbf{X 1}$	$\mathbf{X 2}$
1	1	0	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	1	0	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	1	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	1	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	1	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	1	0	\cdots	0	$+1+\delta$	$-1+\delta$
1	0	0	0	1	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	0	1	\ldots	0	$+1+\delta$	$-1+\delta$
\vdots								
1	0	0	0	0	\ldots	1	$-1+\delta$	$+1+\delta$
1	0	0	0	0	\ldots	1	$+1+\delta$	$-1+\delta$

- Stepwise regression finds:

$$
Y=D_{1}+D_{2}+\cdots+D_{n / 2}
$$

Nasty example for stepwise

\mathbf{Y}	D1	D2	D3	D4	\ldots	Dn/2	X1	X2
1	1	0	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	1	0	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	1	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	1	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	1	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	1	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	0	1	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	0	1	\ldots	0	$+1+\delta$	$-1+\delta$
\vdots								
1	0	0	0	0	\ldots	1	$-1+\delta$	$+1+\delta$
1	0	0	0	0	\ldots	1	$+1+\delta$	$-1+\delta$

- Actually:

$$
Y=(X 1+X 2) / \delta
$$

Nasty example for stepwise

\mathbf{Y}	D1	D2	D3	D4	\ldots	Dn/2	X1	X2
1	1	0	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	1	0	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	1	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	1	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	1	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	1	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	0	1	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	0	1	\ldots	0	$+1+\delta$	$-1+\delta$
\vdots								
1	0	0	0	0	\ldots	1	$-1+\delta$	$+1+\delta$
1	0	0	0	0	\ldots	1	$+1+\delta$	$-1+\delta$

- Stepwise regression finds the wrong model
- The model it finds is $n / 4$ times bigger than it needs

Nasty example for stepwise

\mathbf{Y}	D1	D2	D3	D4	\ldots	Dn/2	$\mathbf{X 1}$	$\mathbf{X 2}$
1	1	0	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	1	0	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	1	0	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	1	0	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	1	0	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	1	0	\ldots	0	$+1+\delta$	$-1+\delta$
1	0	0	0	1	\ldots	0	$-1+\delta$	$+1+\delta$
1	0	0	0	1	\ldots	0	$+1+\delta$	$-1+\delta$
\vdots								
1	0	0	0	0	\ldots	1	$-1+\delta$	$+1+\delta$
1	0	0	0	0	\ldots	1	$+1+\delta$	$-1+\delta$

- Lasso will also find the wrong model

One example on one algorithm isn't real mathematics!

Theorem (Natarajan 1995)

Stepwise regression will have a prediction accuracy of at most twice optimal using at most $\approx 18\left|X^{+}\right|_{2}^{2} q$ variables.

- This result was only recently noticed to be about stepwise regression. He didn't use that term.
- The risk inflation is a disaster.
- The $\left|X^{+}\right|_{2}$ is a measure of co-linearity.
- This bound can be arbitrarily large.
- Brings up two points: we are willing to "cheat" on both accuracy and number of variables. But hopefully not by very much.

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time algorithm which outputs q variables achieves a risk better than

$$
R(\widehat{\theta}) \gtrsim \frac{1}{\gamma^{2}(X)} \sigma^{2} q \log (p) .
$$

Where γ is the RE, a measure of co-linearity.

- Actual statement is much more complex and involves a version of the assumption that $P \neq N P$.
- It was previously known that that

$$
R\left(\widehat{\theta}_{\text {lasso }}\right) \lesssim \frac{1}{\gamma^{2}(X)} \sigma^{2} q \log (p) .
$$

Theorem (Foster, Karloff, Thaler 2014)

No algorithm exists which achieves all three of the following goals:

- Runs efficiently (i.e. in polynomial time)
- Runs accurately (i.e. risk inflation < p)
- Returns sparse answer (i.e. $|\widehat{\beta}|_{0} \ll p$)
- Strongest version requires an assumption about complexity (which I can't understand).
- The proof relies on "interactive proof theory." (which I also can't understand).
- The sparsity results depend on the assumptions used. We can get $|\widehat{\beta}|_{0}<c q$ easily, and $|\widehat{\beta}|_{0}<p^{99}$ with difficulty.
- Difficult to improve to $|\widehat{\beta}|_{0} \leq p$ since then all the heavy lifting is being done by the accuracy claims.
- Several algorithms have been proposed to solve these
- In some cases they run well, in some cases they are a disaster
- Fun mathematics-but not really informative as to what to do in practice
- Nothing will ever work perfectly
- So we have to hope the world is nice to us
- Let's trust in this hope.

Algorithm summary:

- Sort the variables putting the ones you like best first
- For example, linear terms before interactions
- put variables used last year before new ones to try
- Try each variable one at a time
- Add it to the regression if it is significant
- Simplest rule: keep any with $|t|>\sqrt{2 \log (p)}$
- Fancy rule: Use alpha spending. But, give yourself an α bonus ever time you reject.

Wealth = .05;
while (Wealth >0) do
bid = amount to bid;
Wealth = Wealth - bid;
let X be the next variable to try;
if (p-value of X is less than bid) then
Wealth = Wealth +.05 ;
Add X to the model
end
end

- This is even more Greedy than stepwise regression
- provides mFDR protection
- Instead of orthogonalizing each new X, only approximately orthogonalize it.
- Can be done via sampling
- Can be done use fast matrix methods
- For sub-modular problems, it works well

Let $W(j)$ be the "alpha wealth" at time j. Then for a series of p-values p_{j}, we can define:

$$
W(j)-W(j-1)=\left\{\begin{array}{cl}
\omega & \text { if } p_{j} \leq \alpha_{j}, \tag{1}\\
-\alpha_{j} /\left(1-\alpha_{j}\right) & \text { if } p_{j}>\alpha_{j} .
\end{array}\right.
$$

Theorem

(Foster and Stine, 2008, JRSS-B) An alpha-investing rule governed by (1) with initial alpha-wealth $W(0) \leq \alpha \eta$ and pay-out $\omega \leq \alpha$ controls $m F D R_{\eta}$ at level α.
(Foster, Dongyu Lin, 2011) VIF regression approximates a streaming feature selection method with speed $O(n p)$.

Capacity

VIF out-of-sample

Out-of-sample Error -- Comparison of Different Algorithms (p=200)

Theorem

(Foster, Johnson, Stine, 2013) If the R-squared in a regression is submodular (aka subadditive) then a streaming feature selection algorithm will find an estimator whose out risk is within a factor of e/(e-1) of the optimal risk.

About that calibration plot

- We used PAV and crossed our fingers.
- Chirag Gupta has shown how to do this correctly.
- Stepwise regression when used correctly has good performance
- include variables with $|t|>\sqrt{2 \log (p)}$
- Use interactions
- Use dummy's for missing values
- Use robust p-values
- Other fast alternatives
- alpha investing (this talk)
- Fast matrix methods (this afternoons talk)
- gradient methods (Yichao Lu or try VW)

Thanks!

Bibliography

Risk Inflation

Streaming Feature Selection

- Foster and Edward George "The Risk Inflation Criterion for Multiple Regression," , The Annals of Statistics, 22, 1994 1947-1975.
- Donoho, David L., and Jain M. Johnstone. "Ideal spatial adaptation by wavelet shrinkage." Biometrika (1994): 425-455.
- Kory Johnson, Dongyu Lin, Dean Foster, Lyle Ungar and Bob Stine "A risk ratio comparison of L0 and L1 penalized regression," (2015). link.
- Foster, J. Zhou, L. Ungar and R. Stine "Streaming Feature Selection using alpha investing," KDD 2005.
- " α-investing: A procedure for Sequential Control of Expected False Discoveries" Foster and R. Stine, JRSS-B, 70, 2008, pages 429-444.
- "VIF Regression: A Fast Regression Algorithm for Large Data" Foster, Dongyu Lin, and Lyle Ungar, JASA, 2011.
- Kory Johnson, Bob Stine, Dean Foster "Submodularity in statistics."
- Jinjin Tian, Aaditya Ramdas "ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls," (2019).

Computational issues

Calibration

- Natarajan, B. K. (1995). "Sparse Approximate Solutions to Linear Systems." SIAM J. Comput., 24(2):227-234.
- "Lower bounds on the performance of polynomial-time algorithms for sparse linear regression" Y Zhang, MJ Wainwright, MI Jordan - arXiv preprint arXiv:1402.1918, 2014
- Justin Thaler, Howard Karloff, and Dean Foster, "L-0 regression is hard."
- Moritz Hardt, Jonathan Ullman "Preventing False Discovery in Interactive Data Analysis is Hard."
- Foster and R. Stine "Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy," 2004.
- Chirag Gupta, "Post-hoc calibration without distributional assumptions," 2022.
- Foster and Edward George "The Risk Inflation Criterion for Multiple Regression," , The Annals of Statistics, 22, 1994, 1947-1975.
- Donoho, David L., and Jain M. Johnstone. "Ideal spatial adaptation by wavelet shrinkage." Biometrika (1994): 425-455.
- Kory Johnson, Dongyu Lin, Dean Foster, Lyle Ungar and Bob Stine "A risk ratio comparison of L0 and L1 penalized regression," (2015). link.
- Foster, J. Zhou, L. Ungar and R. Stine "Streaming Feature Selection using alpha investing," KDD 2005.
- " α-investing: A procedure for Sequential Control of Expected False Discoveries" Foster and R. Stine, JRSS-B, 70, 2008, pages 429-444.
- "VIF Regression: A Fast Regression Algorithm for Large Data" Foster, Dongyu Lin, and Lyle Ungar, JASA, 2011.
- Kory Johnson, Bob Stine, Dean Foster "Submodularity in statistics."
- Jinjin Tian, Aaditya Ramdas "ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls," (2019).

Computational issues

- Natarajan, B. K. (1995). "Sparse Approximate Solutions to Linear Systems." SIAM J. Comput., 24(2):227-234.
- "Lower bounds on the performance of polynomial-time algorithms for sparse linear regression" Y Zhang, MJ Wainwright, MI Jordan - arXiv preprint arXiv:1402.1918, 2014
- Justin Thaler, Howard Karloff, and Dean Foster, "L-0 regression is hard."
- Moritz Hardt, Jonathan Ullman "Preventing False Discovery in Interactive Data Analysis is Hard."

Calibration

- Foster and R. Stine "Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy," 2004.
- Chirag Gupta, "Post-hoc calibration without distributional assumptions," 2022.

