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Plan for the next three days

Goal: Getting comfortable with worst case data
I’ll give a different proof sketch every session
I’ll develop more philosophy than mechanics
Now “classic” (e.g. in COLT)

Goal: Introducing calibration
First three lectures will be worst case sequential data
Last lecture will discuss traditional regression

Goal: Fast methods for regression
Lecture 4 will discuss stepwise regression and other fast
regression methods
This will set up the need for calibration in lecture 5



Schedule

Monday Tuesday Wednesday

Morning
(10-12)

Individual
sequences

CMU speakers
(Ann Lee, David

Choi, Aaditya Ramdas)

Regression
and

big data
Lunch students students students

Afternoon
(2:30-4)

Calibeating
Macau

and
normal equations

Cross sectional
Calibration

Dinner faculty faculty



Asking the right question

Bad question: Can a forecaster guarantee the frequency of rain
days to match their forecast?

time 0 1 2 3 4 5 6 7 8 · · ·
forecast .4 .6 .7 .2 .6 .1 .6 .4 .4 · · ·

evil result 1 0 0 1 0 1 0 1 1 · · ·

Y =

{
0 if ŷ > .5
1 if ŷ ≤ .5

For low forecasts, frequency is 1
For high forecasts, frequency is 0
Never calibrated (Oakes 1985)

So clearly the wrong question since nature wins instead of the
statistician winning!
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Choosing between two investments

Problem: Suppose I have two friends who are hot-shot
financial wizards. They come from different schools of
thought and both believe the other to be totally clueless.
So, in fact, I have one friend who is a financial wizard, and
one friend who is an impostor. But, I don’t know which is
which!
Goal: I want to get as rich as my financial wizard
friend–whichever that empirically turns out to be.
No assumptions: I will not make any probabilistic
assumptions.



Setup for finance

Notation:
At is the wealth of my first friend at time t
Bt is the wealth of my second friend
Ct is my wealth
wt is fraction of my wealth A invests for me at time t

A0 = B0 = C0 = 1
Returns:

RA
t = At/At−1 is A’s return

RB
t = Bt/Bt−1 is B’s return

RC
t = wt−1RA

t + (1− wt−1)RB
t is my return

Goal:
Ct ∼= max(At ,Bt)

All three are growing “exponentially,” so use log(Ct)
instead. Now growing “linearly.” So goal is:

log(Ct)

t
∼= max(

log(At)

t
,
log(Bt)

t
)



Invest with my best friend

Scheme: Whichever friend is currently wealthier is “more
likely” to be the financial wizard. So have her invest all my
wealth:

wt =

{
1 if At−1 ≥ Bt−1
0 if At−1 < Bt−1

Evil data:
time 0 1 2 3 4 5 6 7 8 · · ·

At 1 1 2 2 4 4 8 8 16 · · ·
Bt 1 2 2 4 4 8 8 16 16 · · ·
wt 1 0 1 0 1 0 1 0 1 · · ·
Ct 1 1 1 1 1 1 1 1 1 · · ·

growth rates:
A’s growth rate: ln(2)/2
B’s growth rate: ln(2)/2
C’s growth rate: 0



Equal weight

Scheme: Always have each friend invest 1/2 of my wealth:

wt = 1/2

Evil data:
time 0 1 2 3 4 5 6 · · ·

At 1 2 4 8 16 32 64 · · ·
Bt 1 1 1 1 1 1 1 · · ·
wt 1/2 1/2 1/2 1/2 1/2 1/2 1/2 · · ·
Ct 1 1.5 2.25 3.4 5.1 7.6 11.4 · · ·

growth rates:
A’s growth rate: ln(2)/2
B’s growth rate: 0
C’s growth rate: ln(1.5)/2



Value weighted

Scheme: Have each invest in proportion to how well the
have done so far.

wt =
At−1

At−1 + Bt−1

No evil data exist!
Growth rate of C:

ln(Ct)

t
=

ln(At/2 + Bt/2)
t

≥ max{ ln(At)

t
,
ln(Bt)

t
} − ln(2)

t

In particular:

lim
t→∞

ln(Ct)

t
−max{ ln(At)

t
,
ln(Bt)

t
} = 0



Why did this work and not our first problem?

Log smooths out differences
Our final wealth is only 1/2 of the better investor

Intermediate value theorem avoids sharp edges
We don’t have to pick a winner
We can hedge our bets by giving some to both

(ideas from Avrim Blum and Adam Kalai)



Choosing between two forecasts

Problem: Suppose I have two friends who are hot-shot
meteorologists. They come from different schools of
thought and both believe the other to be totally clueless.
Goal: I want to forecast the chance of rain as well as my
hotshot friend.
No assumptions: No probabilistic model.



Reduction to finance problem

We can reduce our problem to the finance one we solved
already:

Change money to probability
Instead of multiplying returns, multiply probabilities
Instead of log wealth, look at log probability loss

Theorem
A Bayesian combination can do as well as the better
meteorologist using log probability loss.
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History

Proved for the “first time” in all the following papers:
“Controlled Random Walks”
“On Pseudo-games”
“A Randomized Rule for Selecting Forecasts”
“Approximating the Bayes risk in Repeated Plays”
“Aggregating Strategies”
“Compression of Individual Sequences via Variable-Rate
Coding”
“Universal Portfolios”

Real first time:
Hannan (1955) proved and stated it
Blackwell (1954 / 1990) proved but didn’t bother stating it
until much later

(F. and Vohra 1999 for more history)
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Back to calibration

How can we make the calibration game winnable?
One smooth scoring rule instead of each forecast sold
separately
Allow randomization to get intermediate value to hold



Calibration: Smooth function

ρ(p) = fraction of successes
n(p) = number of forecasts
N = total

C = calibration score =
∑

p

n(p)
N

(ρ(p)− p)2

Theorem (Oakes 1985)

Every deterministic forecast has a sequence with C ≥ 1/4.



So we need randomization

We’ll sneak up on calibration by reducing it to other problems:
First we will introduce “no internal regret”
We’ll prove that exists by reducing it to regular regret
Then we’ll prove calibration by reducing it to no
internal-regret



Regret

Consider a set of k actions
Let Ut(i) be the utility of action i at time t
Let ct ∈ {1, . . . , k} pick among these k different actions
Utility of this choice is: Ut(ct).

Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).
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Definition (Traditional regret)

max
j

∑
i

R i→j
t = o(t).
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Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

Definition (Swap regret)∑
i

max
j

R i→j
t = o(t).



Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

Assume we have an algorithm with small regret.
We’ll use it to construct a no-internal regret algorithm



Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

For each action i have a no regret algorithm which runs
whenever we play i
This will pick good alternative actions
So R i→j 6= o(t).
But we are not playing i anymore!



Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

Let P ji be the probability of algorithm i playing j

π = Pπ

Now we play j as suggested by algorithm i .
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R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

Let P ji be the probability of algorithm i playing j

π = Pπ

Now we play j as suggested by algorithm i .
We called this a flow condition
Sergiu Hart called it regret matching
Blum and Mansour didn’t bother to name it!



Definition
The regret generated by changing i ’s to j ’s is:

R i→j
t ≡

t∑
s=1

Ics=i (Us(j)− Us(i)).

Let P ji be the probability of algorithm i playing j

π = Pπ

Now we play j as suggested by algorithm i .

Theorem (Foster & Vohra 1995)
There exist a no internal regret algorithm, namely
maxij R i→j

t = o(t).



Theorem
Swap regret⇔ Internal regret⇒ traditional regret.

Proof:

kmax
ij

R i→j
t︸ ︷︷ ︸

internal

≥
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i
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t︸ ︷︷ ︸

internal

≥ (1/k)max
j

∑
i
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t︸ ︷︷ ︸

traditional

.
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Calibration

Consider the k actions: p̂t ∈ {0, 1
k ,

2
k , . . . ,

k−1
k ,1}.

Use quadratic loss
If the frequency is far from p̂t then switching to a i

k which is
closer
Running this no-internal regret algorithm will generate a
calibrated forecast.

Theorem (Foster & Vohra 1991-1998)
There exist a randomized calibrated forecast.



What is an equilibrium?



Definition of Nash equilibrium

Definition (Nash Equilibrium)
For two players, with sigma fields F and G, and utilities Uf and
Ug then f playing X and g playing Y is a Nash equilibrium if:

E(Uf (X ,Y )|F) ≥ E(Uf (x ,Y )|F) for all x
E(Ug(X ,Y )|G) ≥ E(Ug(X , y)|G) for all y
F is independent of G.
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Definition of Nash equilibrium

Definition (Correlated Equilibrium)
For two players, with sigma fields F and G, and utilities Uf and
Ug then f playing X and g playing Y is a Nash equilibrium if:

E(Uf (X ,Y )|F) ≥ E(Uf (x ,Y )|F) for all x
E(Ug(X ,Y )|G) ≥ E(Ug(X , y)|G) for all y

Roger Myerson: “2 out of 3 intelligent species discover
Correlated equilibrium before Nash equilibrium.”

I’ve been quote Roger before he got his Nobel in 2007.



Fictitious play model

The first player predicts the second player
The second player predicts the first player
Each plays a best reply to their predictions
Called fictitious play

Theorem (Foster and Vohra, 1998)
If both players use a calibrated forecast, they converge to a
Correlated equilibrium.
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Theorem (Foster and Vohra, 1998)
If both players use a calibrated forecast, they converge to a
Correlated equilibrium.



Where to next?

This afternoon we’ll remove some of the randomness
Allows convergence to Nash equilibrium

We’ll see how to be calibrated AND find patterns in data
Called “calibeating”

See you after lunch!



Summary handout

Calibration
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• Works well for big data since only costs a few
more degrees of freedom.

• “Variable selection in data mining: Building a
predictive model for bankruptcy,” Foster and
Stine, JASA, 2004.

• “Efficient Learning of Generalized Linear and
Single Index Models with Isotonic Regression,”
Kakade, Kalai, Kanade, and Shamir, 2011.

• “Precision and Accuracy of Judgmental Estima-
tion,” Foster and Yaniv, Journal of Behavioral
Decision Making (1997).

• “Graininess of Judgment Under Uncertainty:
An Accuracy - informativeness Tradeoff,” Fos-
ter and Yaniv Journal of Experimental Psychol-
ogy: General, 1995.

• We looked at confidence intervals.

• Humans actually are responding to the social
utility function.

“Suppose in a long (conceptually
infinite) sequence of weather fore-
casts, we look at all those days
for which the forecast probability of
precipitation was, say, close to some
given value p and then determine
the long run proportion f of such
days on which the forecast event
(rain) in fact occurred. If f = p
the forecaster may be termed well
calibrated.”

Phillip Dawid

• “Asymptotic Calibration,” Foster and
Vohra, Biometrika, 1998, (also Foster
GEB 1999).

• “Regret in the On-line Decision Prob-
lem,” Foster and Vohra, GEB 1999. (See
also AI-STATS 2012 and MOR 2014.)

• “Deterministic Calibration and Nash
Equilibrium” Foster and Kakade, COLT,
2004, (see also Foster & Hart, JPE 2021.)

Games

• “Calibrated Learning and Correlated
Equilibrium,” Foster and Vohra Games
and Economic Behavior, 1997.

– Playing calibrated forecasts will lead
to correlated equilibria

– Playing no-interal regret actions will
converge to correlated equilibria

• Extended in “A general class of adaptive
strategies, ” by Hart and Mas-Colell 2001.

“If there is intelligent life on other
planets, in a majority of them,
they would have discovered corre-
lated equilibrium before Nash equi-
librium.”

Roger Myerson

Nash is hard

• Yes: You can learn NE from a grain of
truth. (Kalai and Lehrer 1993).

• No: Not exactly. (Nachbar 1997, Foster
and Young 2001)

• Yes: Via exhaustive search–i.e. very
slowly. (Foster and Young 2006)

• No: Hart and Mas-Colell 2011.

• Yes: Via public, deterministic calibration
which is very slow (Foster and Kakade
2008, Foster and Hart 2018)

• For all but the smallest games, it is basi-
cally no.

Recommendations

• Use isotonic link functions to calibrate regressions (Wednesday)

• Use fixed point based calibration for time series (Tuesday)

• Use no-internal regret for game theory (Monday morning)

• Let go of Nash equilibrium (Monday morning)
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